Skip to main content

Sources

  • Chapter

Part of the book series: Environmental Science Research ((ESRH,volume 35))

Abstract

Indoor air radon concentrations can vary over four orders of magnitude. Why? These ranges occur because of the wide variations in the rate at which radon is generated from its sources (primarily soils, groundwater, and building materials), in the modes of radon’s transport through various materials, and in the means of its entry into structures. In this chapter, the sources and mechanisms of transport of radon emanating from natural and man-made environments will be discussed, focusing on those factors which result in elevated indoor radon concentrations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. P. Clark, Jr., Handbook of Physical Constants, Geol. Soc. Am. Memoir 97, New York (1966).

    Google Scholar 

  2. J. B. Mertie, Jr., Monazite deposits of the southeastern United States, U.S. Geol. Survey Circular 237, 31 (1953).

    Google Scholar 

  3. A. B. Tanner, in: Natural Radiation Environment (J. A. S. Adams and W. M. Lowder, eds.), pp. 161–190, University of Chicago Press, Chicago (1964).

    Google Scholar 

  4. A. B. Tanner, in: Natural Radiation Environment III (T. F. Gesell and W. J. Lowder, eds.), pp. 5–56, U.S. Department of Energy Report CONF-780422, Washington, DC (1980).

    Google Scholar 

  5. G. Lambert, P. Bristeau, and G. Polian, Evidence of little migration of radon within rock grains, C. R. Acad. Sci., Ser. D, 274, 3333–3336 (1972).

    CAS  Google Scholar 

  6. G. Lambert and P. Bristeau, Migration of radon atoms implanted in crystals by recoil energy, J. Phys. (Paris), Colloq. C5, 137–138 (1973).

    Google Scholar 

  7. A. V. Nero and W. W. Nazaroff, Characterizing the source of radon indoors, Radiat. Prot. Dosim. 7, 23–39 (1984).

    CAS  Google Scholar 

  8. A. B. Tanner, in: Proc. Air Pollution Control Association International Specialty Conference, pp. 1–12, Air Pollution Control Association Pub. SP-54, Pittsburgh, PA (1986).

    Google Scholar 

  9. Rama and W. S. Moore, Mechanism of transport of U-Th series radioisotopes from solids into ground water, Geochim. Cosmochim. Acta 48, 395–399 (1984).

    Article  CAS  Google Scholar 

  10. Rama and W. S. Moore, Nanoporosity in natural minerals, unpublished manuscript, Department of Geology, University of South Carolina, Columbia (1986).

    Google Scholar 

  11. P. M. C. Barretto, Emanation Characteristics of Rocks, Soils, and Rn-222 Ion Effect on the U-Pb System Discordance, Ph.D. thesis, Rice University, Houston, TX (1973).

    Google Scholar 

  12. K. Megumi and T. Mamuro, Emanation and exhalation of radon and thoron gases from soil particles, J. Geophys. Res. 79, 3357–3360 (1974).

    Article  CAS  Google Scholar 

  13. K. Megumi and T. Mamuro, Concentration of uranium series nuclides in soil particles in relation to their size, J. Geophys. Res. 82, 353–356 (1977).

    Article  CAS  Google Scholar 

  14. E. Stranden, A. K. Kolstad, and B. Lind, Radon exhalation: Moisture and temperature dependence, Health Phys. 47, 480–484 (1984).

    PubMed  CAS  Google Scholar 

  15. W. Jacobi and K. Andre, The vertical distribution of radon-222, radon-220, and their decay products in the atmosphere, J. Geophys. Res. 68, 3799–3814 (1963).

    Article  CAS  Google Scholar 

  16. Rama, Monsoon circulation from observation of natural radon, Earth Planet. Sci. Lett. 6, 56–60 (1969).

    Article  Google Scholar 

  17. R. E. Larson and D. J. Bressan, in: Natural Radiation Environment III (T. F. Gesell and W. M. Lowder, eds.), pp. 308–326, U.S. Department of Energy Report CONF-780422, Washington, DC (1980).

    Google Scholar 

  18. T. F. Gesell, Background atmospheric 222Rn concentrations outdoors and indoors: A review, Health Phys. 45, 289–302 (1983).

    Article  PubMed  CAS  Google Scholar 

  19. United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and Effects of Ionizing Radiation, Report to the General Assembly with Annexes, United Nations, New York (1977).

    Google Scholar 

  20. H. M. Pritchard and T. F. Gessell, Radon in the environment, in: Advances in Radiation Biology, Vol. II, John Lett (ed.), pp. 391–428, Academic Press, New York (1984).

    Google Scholar 

  21. G. Akerblom, P. Andersson, and B. Clavensjo, Soil gas radon—a source for indoor radon daughters, Radiat. Prot. Dosim. 7, 49–54 (1984).

    Google Scholar 

  22. A. Hesselborn, Radon in Soil Gas: A Study of Methods and Instruments for Determining Radon Concentration in the Ground, Geological Survey of Sweden, Series C, No. 803, Stockholm (1985), p. 58.

    Google Scholar 

  23. J. Otten, Indoor radon—Geologic controls in Pacific Northwest (abs.), in: Proc. Geological Society of American, Southeast Section Meeting (1987).

    Google Scholar 

  24. T. E. Myrick, B. A. Borven, and F. F. Haywood, Determination of concentrations of selected radionuclides in surface soils in the United States, Health Phys. 45, 631–642 (1983).

    Article  PubMed  CAS  Google Scholar 

  25. B. A. Moed, W. W. Nazaroff, A. V. Nero, M. B. Schwehr, and A. Van Heuvelen, Identifying Areas with Potential for High Indoor Radon Levels: Analysis of the National Airborne Radiometric Reconnaissance Data for California and the Pacific Northwest, Lawrence Berkeley Laboratory Report (LBL-16955), University of California, Berkeley (1984), p. 70.

    Book  Google Scholar 

  26. G. V. Akerblom, in: Proc. International Meeting on Radon—Radon Progeny Measurements, U.S. EPA Report 520/5-83/021 (1982), pp. 171-185.

    Google Scholar 

  27. W. W. Nazaroff and A. V. Nero, Transport of Radon from Soil into Residences, Lawrence Berkeley Laboratory Report (LBL-16823), University of California, Berkeley (1984).

    Google Scholar 

  28. W. W. Nazaroff, S. R. Lewis, S. M. Doyle, B. A. Moed, and A. V. Nero, Experiments in Pollutant Transport from Soil into Residential Basements by Pressure-Drive Air Flow, Lawrence Berkeley Laboratory Report (LBL-18374), University of California, Berkeley (1986), p. 25.

    Google Scholar 

  29. W. E. Clements and M. H. Wilkening, Atmospheric pressure effects on 222Rn transport across the earth-air interface, J. Geophys. Res. 79, 5025–5029 (1974).

    Article  CAS  Google Scholar 

  30. G. A. Swedjemark, Radon and Its Decay Products in Housing, Department of Radiation Physics, University of Stockholm Report ISBN91-7146-637-7 (1985).

    Google Scholar 

  31. C. Wilson, in: Proc. International Meeting on Radon—Radon Progeny Measurements, U.S. EPA Report 520/5-83/021 (1982), pp. 209-233.

    Google Scholar 

  32. G. Akerblom, Investigation and Mapping of Radon Risk Areas, Swedish Geological Co. Report: IRAP 86036, Lulea, Sweden (1986), p. 15.

    Google Scholar 

  33. U.S. Environmental Protection Agency, Areas with Potentially High Radon Levels FACT Sheet, U.S. EPA, Office of Radiation Programs, Washington, DC (1986).

    Google Scholar 

  34. E. P. Wagner, Radon monitoring in northern communities, Chronic Diseases in Canada 4, 6–7 (1983).

    Google Scholar 

  35. J. K. Cochran, in: Uranium Series Disequilibrium: Applications to Environmental Problems (M. Ivanovitch and R. S. Harmon, eds.), pp. 384–430, Clarendon Press, Oxford, England (1982).

    Google Scholar 

  36. R. J. Elsinger and W. S. Moore, Gas exchange in the Pee Dee River based on 222Rn evasion, Geophys. Res. Lett. 10, 443–446 (1983).

    Article  CAS  Google Scholar 

  37. S. Emerson, Gas exchange rates in small Canadian shield lakes, Limnol. Oceanogr. 20, 754–761 (1975).

    Article  CAS  Google Scholar 

  38. W. S. Broecker, in: Symposium on Diffusion in Oceans and Fresh Water (T. Ichiye, ed.), pp. 116–145, Lamont Doherty Geological Observatory, Columbia University, Palisades, NY (1965).

    Google Scholar 

  39. T. R. Horton, Nationwide Occurrence of Radon and Other Natural Radioactivity in Public Water Supplies, U.S. EPA Report 520/5-85-008, U.S. EPA Eastern Environmental Radiation Facility, Montgomery, AL (1985), p. 208.

    Google Scholar 

  40. C. T. Hess, J. Michel, T. R. Horton, H. M. Pritchard, and W. A. Coniglio, The occurrence of radioactivity in public water supplies in the United States, Health Phys. 48, 553–586 (1985).

    Article  PubMed  CAS  Google Scholar 

  41. D. P. Loomis, The relationship between water system size and 222Rn concentration in North Carolina public water supplies, Health Phys. 52, 69–71 (1987).

    PubMed  CAS  Google Scholar 

  42. C. T. Hess, C. V. Weiffenbach, and S. A. Norton, Environmental radon and cancer correlations in Maine, Health Phys. 45, 339–348 (1983).

    Article  PubMed  CAS  Google Scholar 

  43. D. P. Loomis, Radon-222 concentration and aquifer lithology in North Carolina, Ground Water Monitoring Review 7, 33–39 (1987).

    CAS  Google Scholar 

  44. J. Michel and W. S. Moore, 228Ra and 226Ra Content of Groundwater in Fall Line Aquifers near Leesville, SC, S.C. Water Resources Research Inst. Report 83, Clemson University, Clemson, SC (1980), p. 50.

    Google Scholar 

  45. M. Aastrup, Natural Activities of Uranium, Radium, and Radon in Groundwater, Geological Survey of Sweden, SKBF-KBS-TR-81-08 (1981), p. 23.

    Google Scholar 

  46. J. Michel and C. D. Pollman, A Model for the Occurrence of 228Ra in Groundwater, Environmental Science and Engineering Report No. 81-227-270, Gainesville, FL (1982), p. 50.

    Google Scholar 

  47. R. S. Livley and G. B. Morey, in: Isotope Studies of Hydrologic Processes (E. C. Perry, Jr. and C. W. Montgomery, eds.), pp. 91–108, Northern Illinois University Press, DeKalb, IL (1982).

    Google Scholar 

  48. M. K. Sasser and J. E. Watson, An evaluation of the radon concentrations of North Carolina groundwater, Health Phys. 34, 667–671 (1978).

    Article  PubMed  CAS  Google Scholar 

  49. J. Michel and W. S. Moore, 228Ra and 226Ra content of groundwater in Fall Line acquifers, Health Phys. 38, 663–671 (1980).

    Article  PubMed  CAS  Google Scholar 

  50. King, J. Michel, and W. S. Moore, Grondwater geochemistry of 228Ra, 226 Ra, and 222Rn, Geochim. Cosmochim. Acta, 46 1173–1182 (1982).

    Article  Google Scholar 

  51. W. Cline, S. Adamovitz, C. Blackman, and B. Kahn, Radium and uranium concentrations in Georgia community water supplies, Health Phys. 43, 1–12 (1983).

    Article  Google Scholar 

  52. C. R. Cothern, W. L. Lappenbusch, and J. Michel, Drinking water contribution to natural background radiation, Health Phys. 50, 33–47 (1986).

    Article  PubMed  CAS  Google Scholar 

  53. R. Collé, R. J. Rubin, L. I. Knob, and J. M. R. Hutchinson, Radon Transport through and Exhalation from Building Materials: A Review and Assessment, U.S. Department of Commerce, National Bureau of Standards, Washington, DC, Technical Note 1139 (1981).

    Google Scholar 

  54. N. Jonassen and J. P. McLaughlin, in: Natural Radiation Environment III (T. F. Gesell and W. J. Lowder, eds.), pp. 1211–1224, U.S. Department of Energy Report CONF-780422, Washington, DC (1980).

    Google Scholar 

  55. G. V. Akerblom and C. Wilson, Radon gas—a radiation hazard from radioactive bedrock and building materials, Bull. Int. Assoc. Eng. Geol. 23, 51–61 (1981).

    Article  Google Scholar 

  56. E. Stranden, Assessment of the radiological impact of using fly ash in cement, Health Phys. 44, 145–153 (1982).

    Article  Google Scholar 

  57. B. Kahn, G. G. Eicholz, and F. J. Clarke, Assessment of the Critical Populations at Risk Due to Radiation Exposure in Structures, Georgia Institute of Technology Report, Atlanta, GA (1979).

    Google Scholar 

  58. J. G. Ingersoll, A survey of radionuclide contents and radon emanation rates in building materials used in the United States, Health Phys. 45, 363–368 (1983).

    Article  PubMed  CAS  Google Scholar 

  59. A. C. George, E. O. Knutson, and H. Franklin, Radon and radon daughter measurements in solar buildings, Health Phys. 45, 413–420 (1983).

    Article  PubMed  CAS  Google Scholar 

  60. T. F. Gesell, Occupational radiation exposure due to 222Rn in natural gas and natural gas products, Health Phys. 29, 681–687 (1975).

    Article  PubMed  CAS  Google Scholar 

  61. U.S. Environmental Protection Agency, Preliminary Findings: Radon Daughter Levels in Structures Constructed on Reclaimed Florida Phosphate Lands, U.S. EPA Tech. Note ORP/CDS-75-4 (1975).

    Google Scholar 

  62. R. J. Guimond, Jr., W. H. Ellett, J. E. Fitzgerald, Jr., S. T. Windham, and P. A. Curry, Indoor Radiation Exposure Due to Radium-226 in Florida Phosphate Lands, U.S. EPA Report 520/4-78-013 (1979).

    Google Scholar 

  63. C. E. Roessler, G. S. Roessler, and W. E. Bolch, Indoor radon progeny exposure in the Florida phosphate mining region: A review, Health Phys. 45, 389–396 (1983).

    Article  PubMed  CAS  Google Scholar 

  64. C. W. Roessler, R. Kantz, W. E. Bolch, Jr., and J. A. Wethington, Jr., in: Natural Radiation Environment III (T. F. Gesell and W. M. Lowder, eds.), pp. 1476–1493, U.S. Department of Energy Report CONF-78-0422, Washington, DC (1980).

    Google Scholar 

  65. J. N. Hartley and H. D. Freeman, Radon Flux Measurements in Gardinier and Royster Phosphogypsum Piles near Tampa and Mulberry, Florida, U.S. EPA Report 520/5-85-029 (1985), p. 29.

    Google Scholar 

  66. A. V. Nero, R. G. Sextro, S. M. Doyle, B. A. Moed, W. W. Nazaroff, K. L. Revzan, and M. B. Schwehr, Characterizing the sources, ranges, and environmental influences of radon-222 and its decay products, The Science of the Total Environment 45, 233–244 (1985).

    Article  PubMed  CAS  Google Scholar 

  67. T. F. Gesell and H. M. Pritchard, in: Natural Radiation Environment III (T. F. Gesell and W. M. Lowder, eds.), pp. 1347–1363, U.S. Department of Energy Report CONF-780477, Washington, DC (1980).

    Google Scholar 

  68. T. F. Gesell and H. M. Pritchard, The technologically enhanced natural radiation environment, Health Phys. 28, 361–366 (1975).

    Article  PubMed  CAS  Google Scholar 

  69. W. W. Nazaroff, S. M. Doyle, A. V. Nero, and R. G. Sextro, Potable water as a source of airborne radon-222 in U.S. dwellings: A review and assessment, Health Phys. 52, 281–295 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Michel, J. (1987). Sources. In: Cothern, C.R., Smith, J.E. (eds) Environmental Radon. Environmental Science Research, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0473-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0473-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0475-1

  • Online ISBN: 978-1-4899-0473-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics