Skip to main content

Measurement

  • Chapter
Environmental Radon

Part of the book series: Environmental Science Research ((ESRH,volume 35))

  • 142 Accesses

Abstract

The discussion in other chapters indicates that the prediction of risk from the 222Rn decay chain in air requires a knowledge of the average concentration of each of the progeny throughout the period of exposure. The most accurate calculations of the dose to the lung use the separate estimates of the concentration of each of the progeny, requiring that the contribution of each to the total exposure be measured separately. An alternative approach is simply to measure the working level concentration directly, which implies that only the total potential alpha energy is measured in the sample of air. While this approach avoids several problems with instrumentation needs, it suffers from the fact that there is not a one-to-one correspondence between working level months (WLM) and dose to the lung. Under many environmental conditions, however, the correspondence is close enough (accurate to within about 20%) to justify use of the WLM as the index of exposure. In addition, the concentration of the progeny can also be estimated by measuring only the 222Rn concentration and then applying standard equlibrium ratios to estimate the concentration of the progeny. Since these ratios can depend on atmospheric conditions and ventilation rates, care must be taken to ensure that correct ratios for the particular structure are employed. The reader should refer to the chapter on exposures (Chapter 5) for a discussion of typical equilibrium ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. F. Gesell, Background atmospheric radon concentrations outdoors and indoors: A review, Health Phys. 43, 277–289 (1983).

    Google Scholar 

  2. “Grand Junction Remedial Action Criteria,” Code of Federal Regulations, Title 10, Part 712 (10CFR712).

    Google Scholar 

  3. A. C. George, Instruments and methods for measuring indoor radon and radon progeny concentrations, in: Indoor Radon, pp. 87–101, Air Pollution Control Association, Pittsburgh, PA (1986).

    Google Scholar 

  4. H. F. Lucas, Jr., Alpha scintillation radon counting, in: Workshop on Methods for Measuring Radiation in and around Uranium Mills (E. D. Harward, ed.), Vol. 3, pp. 69–95, Atomic Industrial Forum, Bethesda, MD (1977).

    Google Scholar 

  5. H. F. Lucas, Jr., Improved low-level alpha scintillation counters for radon, Rev. Sci. Instrum. 28, 680–685 (1957).

    Article  CAS  Google Scholar 

  6. A. C. George, Scintillation flasks for the determination of low level concentrations of radon, in: Proceedings of the Ninth Midyear Health Physics Symposium, Colorado Chapter of the Health Physics Society, Denver, CO (1976), pp. 112–115.

    Google Scholar 

  7. C. W. Sill, An integrating air sampler for determination of Rn-222, Health Phys. 16, 371–377 (1969).

    Article  PubMed  CAS  Google Scholar 

  8. J. W. Thomas and R. J. Countess, Continuous radon monitor, Health Phys. 36, 734–738 (1979).

    PubMed  CAS  Google Scholar 

  9. W. W. Nazaroff, F. J. Offerman, and A. W. Robb, Automated system for measuring air exchange rate and radon concentration in houses, Health Phys. 45, 525–539 (1983).

    Article  PubMed  CAS  Google Scholar 

  10. J. Harley (ed.), HASL Procedures Manual, Health and Safety Laboratory Report HASL-300, New York (1972).

    Google Scholar 

  11. M. E. Wrenn, Design of a continuous digital output environmental radon monitor, IEEE Trans. Nucl. Sci. 22, 645–648 (1975).

    Article  Google Scholar 

  12. M. E. Wrenn and H. B. Spitz, The design and application of a continuous digital readout radon measuring instrument, in: Workshop on Methods for Measuring Radiation in and around Uranium Mills (E. D. Harward, ed.), Vol. 3, pp. 119–130, Atomic Industrial Forum, Bethesda, MD (1977).

    Google Scholar 

  13. R. Rolle, Rapid working level monitoring, Health Phys. 22, 233–238 (1972).

    Article  PubMed  CAS  Google Scholar 

  14. A. C. George and A. J. Breslin, Measurement of environmental radon with integrating instruments, in: Workshop on Methods for Measuring Radiation in and around Uranium Mills (E. D. Harward, ed.), Vol. 3, Atomic Industrial Forum, Bethesda, MD (1977), pp. 105–115.

    Google Scholar 

  15. J. W. Thomas and P. C. LeClare, A study of the two filter method for Rn-222, Health Phys. 18, 113–122 (1970).

    Article  PubMed  CAS  Google Scholar 

  16. A. C. George, A cumulative environmental radon monitor, in: Proceedings of the Ninth Midyear Health Physics Symposium, pp. 116–120, Colorado Chapter of the Health Physics Society, Denver, CO (1976).

    Google Scholar 

  17. A. C. George, Passive integrated measurement of indoor radon using activated carbon, Health Phys. 46, 867–872 (1984).

    Article  PubMed  CAS  Google Scholar 

  18. B. L. Cohen and E. S. Cohen, Theory and practice of radon monitoring with charcoal adsorption, Health Phys. 45, 501–508 (1983).

    Article  PubMed  CAS  Google Scholar 

  19. E. L. Geiger, Radon film badge, Health Phys. 13, 407–411 (1967).

    Article  PubMed  CAS  Google Scholar 

  20. H. W. Alter and R. L. Fleischer, Passive integrating radon monitor for environmental monitoring, Health Phys. 40, 693–702 (1981).

    Article  PubMed  CAS  Google Scholar 

  21. M. Urban and E. Piesch, Low level environmental radon dosimetry with a passive track etch device, Radiat. Prot. Dosim. 1, 97 (1982).

    Google Scholar 

  22. H. L. Kusnetz, Radon daughters in mine atmospheres. A field method for determining concentrations, Am. Ind. Hyg. Assoc. J. 17, 85 (1956).

    CAS  Google Scholar 

  23. E. G. Tsviglou, H. E. Ayers, and D. A. Holaday, Occurrence of nonequilibrium atmospheric mixtures of radon and daughters, Nucleonics 11, 40 (1953).

    Google Scholar 

  24. C. Rangarajan and S. Gopalakrishnan, The estimation of the relative concentrations of short-lived radon daughters by gamma measurements, Health Phys. 24, 433–436 (1973).

    PubMed  CAS  Google Scholar 

  25. L. B. Lockhart, R. L. Patterson, and C. R. Hosier, Determination of Radon Concentration in Air through Measurement of Its Solid Decay Products, Report 6229, U.S. Naval Research Lab, Washington, DC (1965).

    Google Scholar 

  26. D. E. Martz, D. F. Holleman, D. E. McCurdy, and K.J. Schiager, Analysis of atmospheric concentrations of RaA, RaB and RaC by alpha spectros-copy, Health Phys. 17, 131–138 (1969).

    Article  PubMed  CAS  Google Scholar 

  27. J. Bigu, R. Raz, K. Golden, and P. Dominquez, A Computer Based Continuous Monitor for the Determination of the Short Lived Decay Products of Radon and Thoron, Division Report MPR/MRL 83 (OP) J, Canada Centre for Mineral and Energy Technologies, Energy, Mines and Resources of Canada, Elliott Lake, Ontario (1983).

    Google Scholar 

  28. J. A. Auxier, K. Becker, E. M. Robinson, D. R. Johnson, R. H. Boyett, and C. H. Abner, A new radon progeny personnel dosimeter, Health Phys. 21, 126–128 (1971).

    PubMed  CAS  Google Scholar 

  29. D. B. Lovett, Track etch detectors for alpha exposure estimation, Health Phys. 16, 623–628 (1969).

    Article  PubMed  CAS  Google Scholar 

  30. K. Becker, Alpha particle registration in plastics and its applications for radon and neutron personnel dosimetry, Health Phys. 16, 113–123 (1969).

    Article  PubMed  CAS  Google Scholar 

  31. O. White, Jr., Environmental Measurements Lab, Report HASL TM 71-17, New York (1971).

    Google Scholar 

  32. K. J. Schiager, Integrating radon progeny air sampler, Am. Ind. Hyg. Assoc. J. 35, 165 (1974).

    Article  PubMed  CAS  Google Scholar 

  33. A. J. Breslin, S. F. Guggenheim, A. C. George, and R. T. Graveson, A Working Level Dosimeter for Uranium Miners, Report EML-333, U.S. Department of Energy, New York (1977).

    Google Scholar 

  34. F. S. Guggenheim, A. C. George, R. T. Graveson, and A. J. Breslin, A time-integrating environmental radon daughter monitor, Health Phys. 36, 452–455 (1979).

    PubMed  CAS  Google Scholar 

  35. O. White, Jr., USAEC Health and Safety Laboratory (now the Environmental Measurements Lab) Report HASL TM 69-23A, New York (1969).

    Google Scholar 

  36. J. Bigu and R. Kaldenbach, Theory, operation and performance of a time-integrating continuous radon/thoron daughter working level monitor, Radiat. Prot. Dosim. 9, 19 (1984).

    CAS  Google Scholar 

  37. M. Eisenbud, In-vivo measurement of Pb-210 as an indicator of cumulative radon daughter exposure in uranium mines, Health Phys. 16, 637–646 (1969).

    Article  PubMed  CAS  Google Scholar 

  38. H. L. Fisher, Jr., A model for estimating the inhalation exposure to radon-222 and daughter products from the accumulated lead-210 body burden, Health Phys. 16, 597–616 (1969).

    Article  PubMed  CAS  Google Scholar 

  39. R. F. Bell and J. C. Gilliland, Urinary lead-210 as an index of mine radon exposure, in: Radiological Health and Safety in the Mining and Milling of Nuclear Materials, Vol. 2, pp. 411–412, International Atomic Energy Agency, Vienna (1964).

    Google Scholar 

  40. J. Michel and W. S. Moore, Sources and Behavior of Natural Radioactivity in Fall Line Aquifers near Larvette, S.C., Water Resources Research Institute Report No. 83, Clemson University, Clemson, SC (1980).

    Google Scholar 

  41. H. M. Pritchard and T. F. Gesell, An estimate of population exposure due to radon in public water supplies in the area of Houston, Texas, Health Phys. 41, 599 (1981).

    Article  Google Scholar 

  42. M. Asikainen, State of disequilibrium between 238U, 234U, 226Ra, and 222Rn in groundwater from bedrock, Geochim. Cosmochim. Acta 45, 201–206 (1981).

    Article  CAS  Google Scholar 

  43. H. F. Lucas, A fast and accurate survey technique for both radon-222 and radium-226, in: Natural Radiation Environment (J. A. S. Adams and W. M. Lowder, eds.), University of Chicago Press, Chicago (1964).

    Google Scholar 

  44. H. M. Prichard, T. F. Gesell, and C. R. Meyer, Liquid scintillation analyses for radium-226 and radon-222 in potable waters, in: Liquid Scintillation Counting, Recent Applications and Development, Volume 1, Physical Aspects (C-T. Peng, D. L. Horrocks, and E. L. Alpen, eds.), Academic Press, New York, pp. 347–355 (1980).

    Google Scholar 

  45. H. M. Pritchard and T. F. Gesell, Rapid measurement of 222Rn concentration in water with a commercial liquid scintillation counter, Health Phys. 33, 577–581 (1977).

    Article  Google Scholar 

  46. Research Planning Institute, Inc., Statistical Analysis of Analytical Methods for Radionuclide in Drinking Water, Report to U.S. Environmental Protection Agency, Office of Drinking Water, Washington, DC (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crawford-Brown, D.J., Michel, J. (1987). Measurement. In: Cothern, C.R., Smith, J.E. (eds) Environmental Radon. Environmental Science Research, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0473-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0473-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0475-1

  • Online ISBN: 978-1-4899-0473-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics