Skip to main content

Part of the book series: NATO Conference Series ((MARS,volume 12))

Abstract

A search for hydrothermal vents forming metal deposits led to the unexpected discovery of dense beds of clams, mussels, and vestimentiferan worms on the Galapagos Rift in 1977. The clams were first seen in photographs taken by Deep Tow (Lonsdale, 1977) and the whole vent community was later observed from ALVIN (Corliss and Ballard, 1977; Corliss et al., 1979). Subsequent expeditions in 1979 to the Galapagos Rift and in 1982 to the Guaymas Basin, 11–13°N and 21°N on the East Pacific Rise included ecologists, microbiologists, systematists, physiologists, and biochemists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arp, A. J., and Childress, J. J., 1981a, Blood function in the hydrothermal vent vestimentiferan tubeworm, Science 213: 34 2344.

    Google Scholar 

  • Arp, A. J., and Childress, J. J., 1981b, Functional characteristics of the blood of the deep-sea hydrothermal vent brachyuran crab, Science 214: 559–561.

    CAS  Google Scholar 

  • Arp, A. J., and Childress, J. J., 1983, Sulfide binding by the blood of the hydrothermal vent tubeworm Riftia pachyptila, Science 219:295–297.

    Google Scholar 

  • Ballard, R. D., 1977, Notes on a major oceanographic find, Oceanus, 20 (3): 35–44.

    Google Scholar 

  • Ballard, R. D., and Grassle, J. F., 1979, Return to Oases of the Deep, Nat. Geogr. 156(5):689–705.

    Google Scholar 

  • Ballard, R. D., Francheteau, J., Juteau, T., Rangan, C., and

    Google Scholar 

  • Normark, W., 1981, East Pacific Rise at 21°N: the volcanic, tectonic, and hydrothermal processes of the central axis, Earth Planet. Sci. Let. 55:1–10.

    Google Scholar 

  • Ballard, R. D., Holcomb, R. T., and van Andel T. H., 1979, The

    Google Scholar 

  • Galapagos Rift at 86°W: 3. Sheet flows, collapse pits, and lava lakes of the rift valley, Jour. Geophys. Res. 84(B10): 5407–5422.

    Google Scholar 

  • Ballard, R. D., van Andel, T. H., and Holcomb, R. T., 1982, The Galapagos Rift at 56°W 5. Variations in volcanism, structure, and hydrothermal activity along a 30 km segment of the Rift Valley, Jour. Geophys. Res. 87(B2):1149–1161.

    Google Scholar 

  • Baross, J. A., Lilley, M. D., and Gordon, L. I., 1982, Is the CH4, H2 and CO venting from submarine hydrothermal systems produced by thermophilic bacteria?, Nature 298: 366–368.

    CAS  Google Scholar 

  • Boss, K. J., and Turner, R. D., 1980, The giant white clam from the Galapagos Rift, Calyptogena magnifica species novum, Malacologia 20(1):161–194.

    Google Scholar 

  • Burreson, E. M., 1981, A new deep-sea leech, Bathybdella sawyeri gen. et sp. n. from thermal vent areas on the Galapagos Rift, Proc. Biol. Soc. Wash. 94: 483–491.

    Google Scholar 

  • Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., and Waterbury, J. B., 1981, Procaryotic cells in the hydrothermal vent tubeworm, Riftia pachyptila Jones: possible chemoautotrophic symbionts, Science 213: 340–342.

    CAS  Google Scholar 

  • Childress, J. J., and Mickel, T. J., 1982, Oxygen and sulfide consumption rates of the vent clam, Calyptogena pacifica Mar. Biol. Let. 3:73–79.

    Google Scholar 

  • Corliss, J. B., and Ballard, R. D., 1977, Oases of life in the cold abyss, Nat. Geogr. 152(4):441–453.

    Google Scholar 

  • Cohen, D. M., and Haedrich, R. L., The fish fauna of the Galapagos thermal vent region, Deep-Sea Res. (in press).

    Google Scholar 

  • Corliss, J. B., Baross, J. A., and Hoffman, S. E., 1981, An hypothesis concerning the relationship between submarine hot springs and the origin of life on earth, Oceanol. Acta SP:59–69.

    Google Scholar 

  • Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. P., Ballard, R. D., Green, K.,Williams, D.

    Google Scholar 

  • Bainbridge, A., Crane, K., and van Andel, T. H., 1979, Submarine thermal springs on the Galapagos Rift, Science 203: 1073–1083.

    Google Scholar 

  • Crane, K.,and Ballard, R. D., 1980, The Galapagos Rift at 86°W: 4. Structure and morphology of hydrothermal fields and their relationship to the volcanic and tectonic processes of the Rift Valley, Jour. Geophys. Res. 85(B3):1443–1454.

    Google Scholar 

  • Desbruyères, D., and Laubier L., 1980, Alvinella pompejana gen. sp. nov., Ampharetidae aberrant des sources hydrothermales de la ride Est-Pacifique, Oceanol. Acta 3:267–274.

    Google Scholar 

  • Desbruyères, D., and Laubier, L., 1982, Paralvinella grasslei new genus, new species of Alvinellinae (Polychaeta: Ampharetidae) from the Galapagos Rift geothermal vents, Proc. Biol. Soc. Wash., 95:484–494.

    Google Scholar 

  • Desbruyères, D., Crassous, P., Grassle, J., Khripounoff, A.

    Google Scholar 

  • Reyss, D., Rio, M., and Van Praet, M., 1982. Donnees ecologiques sur un nouveau site d’hydrothermalisme actif de la ride du Pacifique Oriental, C.R. Acad. Sci. Paris Ser. III 295: 489–494.

    Google Scholar 

  • Ehrlich, H., 1982, Manganese oxidizing bacteria from a hydrothermal active area on the Galapagos Rift. Ecol. Bull. 35, (in press).

    Google Scholar 

  • Enright, J. T., Newman, W. A., Hessler, R. R., and McGowan, J. A., 1981, Deep-ocean hydrothermal vent communities, Nature 289: 219–221.

    Google Scholar 

  • Fatton, E., and Roux, M., 1981a, Modalites de croissance et microstructure de la coquille de Calyptogena (Vesicomyidae, Lamellibranches), en relation avec les sources hydrothermales oceaniques, C.R. Acad. Sci. Paris 292:55–60.

    Google Scholar 

  • Fatton, E., and Roux, M., 1981b, Etapes de l’organisation micro-structurale chez Calyptogena magnificia Boss et Turner, bivalve a croissance rapide des sources hydrothermales, oceanique, C.R. Acad. Sci. Paris 243:63–68.

    Google Scholar 

  • Fatton, E., Marien, G., Pachiaudi, C., Rio, M., and Roux, M., 1982, Fluctuations de l’activite des sources hydrothermales ocean-igues (Pacifique Est, 21°N) enregistrees lors de la croissance des coquilles de Calyptogena magnifica (Lamellibranche, Vesicomyidae) par les isotopes stables du carbone et de l’oxygene, C.R. Acad. Sci. Paris 293:701–706.

    Google Scholar 

  • Fauchald, K., 1982, A eunicid polychaete from a white smoker, Proc. Biol. Soc. Wash. 95(4):781–787.

    Google Scholar 

  • Felbeck, H., 1981, Chemoautotrophic potentials of the hydrothermal vent tube worm, Riftia pachyptila Jones (Vestimentifera), Science 213: 336–338

    CAS  Google Scholar 

  • Felbeck, H., Childress, J. J., and Somero, G. N., 1981, Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats, Nature 293: 291–293.

    CAS  Google Scholar 

  • Francheteau, J., and Ballard, R. D., The East Pacific Rise near 21°N, 13°N and 20°S: Inferences for along-strike variability of axial processes of the Mid-Ocean Ridge, Earth Planet. Sci. Lett., (in press).

    Google Scholar 

  • Francheteau, J., Needham, D., Juteau, T., and Rongin, C., 1980, Naissance d’un ocean sur la borsale du Pacifique est, CYAMEX, Centre National pour l’Exploitation des Oceans, Paris.

    Google Scholar 

  • Fretter, V., Graham, A., and McLean, J. H., 1981, The anatomy of the Galapagos Rift limpet, Neomphalus fretterae, Malacologia 21:337–361.

    Google Scholar 

  • Galapagos Biology Expedition Participants: Grassle, J. F., Berg, C. J., Childress, J. J., Grassle, J. P., Hessler, R. R., Jannasch, H. W., Karl, D. M., Lutz, R. A., Mickel, T. J.

    Google Scholar 

  • Rhoads, D. C., Sanders, H. L., Smith, K. L., Somero, G. N., Turner, R. D., Tuttle, J. H., Walsh, P. J., and Williams, A. J., 1979, Galapagos ‘79: Initial findings of a biology quest, Oceanus 22 (2): 2–10.

    Google Scholar 

  • Giere, 0., 1981, The gutless marine oligochaete Phallodrilus leukodermatus. Structural studies on an aberrant tubificid associated with bacteria, Mar. Ecol. Prog. Ser. 5:353–357.

    Google Scholar 

  • Grassle, J. F., 1982, The biology of hydrothermal vents: a short summary of recent findings, MTS Jour. 16 (3): 33–38.

    Google Scholar 

  • Harwood, C. S., Jannasch, H. W., and Canale-Parola, E. 1982, Anaerobic spirochaete from a deep-sea hydrothermal vent, Appl. Environ. Microbiol. 44:234–237.

    Google Scholar 

  • Hessler, R., 1981, Oasis under the sea - where sulfur is the staff of life, New Scient. 10 December, pp. 741–747.

    Google Scholar 

  • Hiatt, B., 1980, Sulfides instead of sunlight, Mosaic 11 (4): 15–21.

    Google Scholar 

  • Humes, A., and Dojiri, M., 1980, A siphonostome copepod associated with a vestimentiferan from the Galapagos Rift and East Pacific Rise, Proc. Biol. Soc. Wash. 93(3):697–707.

    Google Scholar 

  • Jannasch, H. W., and Wirsen, C. 0., 1979, Chemosynthetic primary production of East Pacific sea floor spreading centers, Bioscience 29: 592–598.

    CAS  Google Scholar 

  • Jannasch, H., and Wirsen, C., 1981, Morphological survey of microbial mats near deep-sea thermal vents, App. Environ. Microbiol., 41:528–538.

    Google Scholar 

  • Jones, M. L., 1980, Riftia pachyptila a new genus, new species, the vestimentiferan worm from the Galapagos Rift geothermal vents (Pogonophora), Proc. Biol. Soc. Wash. 93(4):1295–1313.

    Google Scholar 

  • Jones, M. L., 1981, Riftia pachyptila Jones: some observations on the vestimentiferan worm from the Galapagos Rift, Science 213: 333–336.

    Google Scholar 

  • Karl, D., Wirsen, C., and Jannasch, H., 1980, Deep-sea primary production at the Galapagos hydrothermal vents, Science 207: 1345–1347.

    CAS  Google Scholar 

  • Killingley, J. S., Berger, W. H., MacDonald, K. C., and Newman, W. A., 1981, 180/160 variations in deep-sea carbonate shells from the Rise hydrothermal field, Nature 287: 218–221.

    Google Scholar 

  • Krantz, G. W., 1982, A new species of Copidognathus Trouessart (Acari:Actinedida:Halacaridae) from the Galapagos Rift, Can. Jour. Zool. 60:1728–1731.

    Google Scholar 

  • Lalou, C., and Brichet, E., 1981, Possibilites de datation des depots de sulfures metalliques hydrothermaux sous-marins par les descendants a vie courte de l’uranium et du thorium, C.R. Acad. Sci. Paris 293:821–826.

    Google Scholar 

  • Lalou, C., and Brichet, E., 1982, Ages and implications of East Pacific Rise sulphide deposits at 21°N, Nature 300: 169–171.

    CAS  Google Scholar 

  • Laubier, L., Desbruyères, D., and Chassard-Bouchaud, P., Evidence of sulfur accumulation in the epidermis of the polychaetes Alvinella pompejana from deep-sea hydrothermal vents, A micro-analytical study, Nature (in press).

    Google Scholar 

  • Liley, M. D., deAngelis, M. A., and Gordon, L. I., 1982, CH4, H2, CO and N20 in submarine hydrothermal vent waters, Nature 300: 48–50.

    Google Scholar 

  • Lonsdale, P., 1977, Clustering of suspension feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers, Deep-Sea Res. 24: 857–863.

    Google Scholar 

  • Lonsdale, P., Batiza, R., and Simkin, T., 1982, Metallogenesis at sea mounts on the East Pacific Rise, MTS Jour. 16 (3): 54–61.

    Google Scholar 

  • Lutz, R. A., 1982, Dissolution of molluscan shells of deep-sea hydrothermal vents, EOS, 63: 1014.

    Google Scholar 

  • Lutz, R. A., Jablonski, D., Rhoads, D. C., and Turner, R. D., 1980

    Google Scholar 

  • Larval dispersal of a deep-sea hydrothermal vent bivalve from the Galapagos Rift, Mar. Biol. 57:127–133.

    Google Scholar 

  • Maciolek, N. J., 1981, Spionidae (Polychaeta, Annelida) from the Galapagos Rift geothermal vent, Proc. Biol. Soc. Wash. 94: 826–837.

    Google Scholar 

  • Malahoff, A., McMurtry, G. M., Wiltshire, J. C., and Yeh, H.-W., 1982, Geology and chemistry of hydrothermal deposits from active submarine volcano Loini, Hawaii, Nature 298: 234–239.

    Article  CAS  Google Scholar 

  • McDonald, K. C., Becker, K., Spiess, F. N., and Ballard, R. D., 1980, Hydrothermal heat flux of the “black smoker” vents on the East Pacific Rise, Earth Planet. Sci. Lett. 48(1980):1–7.

    Google Scholar 

  • McLean, J., 1981, The Galapagos Rift limpet Neomphalus: relevance to understanding the evolution of a major Paleozoic-Mesozoic radiation, Malacologia 21: 291–336.

    Google Scholar 

  • Mickel, T. J., and Childress, J. J., 1982, Effects of pressure and temperature on the EKG and heart rate of the hydrothermal vent brachyuran crab, Bythograea thermydron (Brachyura), Biol. Bull., 162: 70–82.

    Google Scholar 

  • Mickel, T. J., and Childress, J. J., 1982, Effects of temperature, pressure and oxygen concentration on the oxygen consumption role of the hydrothermal vent crab Bythograea thermydron (Brachyura), Physiol. Zool. 55:199–207.

    Google Scholar 

  • Newman, W. A., 1979, A new scalpellid (Cirripedia): a Mesozoic relic living near an abyssal hydrothermal spring, Trans. San Diego Soc. Nat. Hist. 19:153–167.

    Google Scholar 

  • Normark, W. R., Lupton, J. E., Murray, J. W., Koski, R. A., Clague, D. A., Morton, J. L., DeLaney, J. R., and Johnson, M. P., 1982, Polymetallic sulfide deposits and water column tracers of active hydrothermal vents on the Southern Juan de Fuca Ridge, MTS Jour. 16 (3): 46–53.

    Google Scholar 

  • Powell, M. A., and Somero, G. N., 1983, Blood components prevent sulfide poisoning of respiration of the hydrothermal vent tube-worm Riftia pachyptila, Science 219:297–299.

    Google Scholar 

  • Pugh, P. R., A review of the Family Rhodalliidae (Siphonophora: Physonectae), Phil. Trans. Roy. Soc. B., (in press).

    Google Scholar 

  • Rau, G. H., 1981, Hydrothermal vent clam and tube worm 13C/12C: further evidence of non-photosynthetic food sources, Science 213: 338–340.

    CAS  Google Scholar 

  • Rau, G. H., 1981b, Low 15N/14N of hydrothermal vent animals: On-site N2 fixation and organic nitrogen synthesis?, Nature 289: 484–485.

    CAS  Google Scholar 

  • Rau, G. H., and Hedges, J. I., 1979, Carbon-13 depletion in a hydrothermal vent mussel: suggestion of a chemosynthetic food source, Science 203: 648–649.

    CAS  Google Scholar 

  • Rhoads, D. C., Lutz, R. A., Revelas, E. C., and Cerrato, R. M., 1981, Growth of bivalves of the deep-sea hydrothermal vents along the Galapagos Rift, Science 214: 911–913.

    CAS  Google Scholar 

  • Rhoads, D. C., Lutz, R. A., Cerrato, R. M., and Revelas, E. C., 1982, Growth and predation activity at deep-sea hydrothermal vents along the Galapagos Rift, Jour. Mar. Res. 40:503–516.

    Google Scholar 

  • Rise Project Group: Spiess, F. N.,Macdonald, K. C., Atwater, T., Ballard, R., Carranza, A., Cordoba, D., Cox, C., Diaz Garcia, V. M., Francheteau, J., Gurerrero, J., Hawkins, J., Haymon, R., Hessler, R., Juteau, T., Kastner, M., Larson, R., Luyendyk, B.

    Google Scholar 

  • Macdougall, J. D., Miller, S., Normark, W., Orcutt, J., and Rangin, C., 1980, East Pacific Rise: Hot springs and geophysical experiments, Science 207: 1421–1433.

    Google Scholar 

  • Ruby, E. G., and Jannasch, H. W., 1982, Physiological characteristics of Thiomicrospira sp. Strain L-12 isolated from deep-sea hydrothermal vents, Jour. Bacteriol. 149:161–165.

    Google Scholar 

  • Ruby, E. G., Wirsen, C. O., and Jannasch, H. W., 1981, Chemolitho- trophic sulfur-oxidizing bacteria from the Galapagos Rift hydrothermal vents, Appl. Environ. Microbiol. 42:317–324.

    Google Scholar 

  • Simoneit, B. R. T., and Lonsdale, P. F., 1982, Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin, Nature 295: 198–202.

    CAS  Google Scholar 

  • Smithey, W. M., Jr., and Hessler, R. R., Megafaunal distribution at deep-sea hydrothermal vents: an integrated photographic approach, in: “Underwater Photography for Scientists,” (in press).

    Google Scholar 

  • Southward, A. J., Southward, E. C., Dando, P. R., Rau, G. H., Felbeck, H., and Flügel, H., 1981, Bacterial symbionts and low C/13C i2atios in tissues of Pogonophora indicate unusual nutrition and metabolism, Nature 293: 616–620.

    Google Scholar 

  • Terwilliger, R. C., Terwilliger, N. B., and Schabtach, E., 1980, The structure of hemoglobin from an unusual deep-sea worm (Vestimentifera), Comp. Biochem. Physiol. 65B:531–535.

    Google Scholar 

  • Turekian, K. K., and Cochran, J. K., 1981, Growth rate of a vesicomyid clam from the Galapagos Spreading Center, Science 214: 909–911.

    CAS  Google Scholar 

  • Turekian, K., Cochran, J. K., and Nazaki, Y., 1979, Growth rate of a clam from the Galapagos Rise hot spring field using natural radionuclide ratios, Nature, 280: 385–387.

    Article  CAS  Google Scholar 

  • Turner, R. D., 1981, “Wood islands” and “thermal vents” as centers of diverse communities in the deep sea, Biologiya Morya 1: 3–10.

    Google Scholar 

  • Tuttle, J. H., Wirsen, C. O., and Jannasch, H. W., Microbial activities in the emitted hydrothermal waters of the Galapagos Rift vents, Mar. Biol. (in press).

    Google Scholar 

  • van Andel, T. H., and Ballard, R. D., 1979, The Galapagos Rift at 86°W: 2. Volcanism, structure, and evolution of the Rift Valley, Jour. Geophys. Res. 84(B10):5390–5406.

    Google Scholar 

  • van Praet, M., Regime alimentaire des Actinies, Bull. Soc. Zool. France (in press).

    Google Scholar 

  • Williams, A. B., 1980, A new crab family from the vicinity of submarine thermal vents on the Galapagos Rift (Crustacea:Decapoda; Brachyura), Proc. Biol. Soc. Wash. 93(2):443–472.

    Google Scholar 

  • Williams, A. B., and Chase, F. A., 1982, Shrimp of the family Bresiliidae from thermal vents of the Galapagos Rift Crustacea: Decapoda: Caridae), Jour. Crust. Biol. 2(1):136–147.

    Google Scholar 

  • Williams, P. M., Smith, K. L., Druffel, E. M., and Linick, P. W., 1981, Dietary carbon sources of mussels and tubeworms from Galapagos hydrothermal vents determined from tissue 14C activity, Nature 292: 448–449.

    CAS  Google Scholar 

  • Wittenberg, J. B., Morris, R. J., Gibson, Q. H., and Jones, M. L., 1981, Hemoglobin kinetics of the Galapagos Rift vent tube worm, Riftia pachyptila Jones (Pogonophora: Vestimentifera), Science 213: 344–346.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grassle, J.F. (1983). Introduction to the Biology of Hydrothermal Vents. In: Rona, P.A., Boström, K., Laubier, L., Smith, K.L. (eds) Hydrothermal Processes at Seafloor Spreading Centers. NATO Conference Series, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0402-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0402-7_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0404-1

  • Online ISBN: 978-1-4899-0402-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics