Skip to main content

Functional Integration and Wave Propagation

  • Chapter
Functional Integration

Part of the book series: NATO ASI Series ((NSSB,volume 361))

Abstract

We present a pedagogical introduction, including several new results, to Kac’s path integral solution for the telegrapher equation, with emphases on: 1) wave propagation especially waveform (signal) restoration (reconstruction), designing and prediction; and 2) the underlying Poissonian random walk (essentially an asynchronous telegraph signal), especially the measure, and the connection to Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kac, “Some stochastic problems in physics and mathematics,” colloquium lectures in the pure and applied sciences, No. 2, Magnolia Petroleum Co. and Socony Mobil Oil Co. (1956), Hectographed. (Translations in Polish and Russian are available in book form.); Rocky Mountain J. of Math. 4, 497-509 (1974)

    Google Scholar 

  2. S. Goldstein, “On diffusion by discontinuous movements, and on the telegraph equation,” Quant. J. Mech. Appl. Math. 4, 129–156 (1951)

    Article  MATH  Google Scholar 

  3. S. Kaplan, “Differential equations in which the Poisson process plays a role,” Bull. Am. Math. Soc. 70, 264–268 (1964)

    Article  MATH  Google Scholar 

  4. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, 1965)

    Google Scholar 

  5. R. Hersh, “Random evolutions: A survey of results and problems,” Rocky Mountain J. of Math. 4 (1974), 443–477; and “Stochastic solutions of hyperbolic equations,” in Partial Differential Equations and Related Topics, eds. A. Dold and B. Eckmann, Lecture Notes in Mathematics #446 (Springer-Verlag, Berlin, 1975), p. 283-300

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Gaveau, T. Jacobson, M. Kac, and L. S. Schulman, “Relativistic Extension of the Analogy between Quantum Mechanics and Brownian Motion,” Phys. Rev. Lett. 53, 419–422 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  7. T. Ichinose, “Path Integral for the Dirac Equation in two space-time dimensions,” Proc. of the Japan Academy, 58, Ser. A, No. 7 (1982)

    Google Scholar 

  8. T. Jacobson and L. S. Schulman, “Quantum Stochastics: The passage from a relativistic to a non-relativistic path integral,” J. Phys. A 17, 375 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  9. S. N. Ethier and T. G. Kurtz, Markov Processes Characterization and Convergence (John Wiley and Sons, New York, 1986), p. 468–491

    MATH  Google Scholar 

  10. C. DeWitt-Morette and S. K. Foong, “Path integral solutions of wave equations with dissipation” Phys. Rev. Lett. 62, 2201–2204 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  11. C. DeWitt-Morette and S. K. Foong, “Kac’s solution of the telegrapher equation, revisited: Part I,” in Developments in General Relativity, Astrophysics and Quantum Theory, A Jubilee Volume in Honour of Nathan Rosen, eds. F. I. Cooperstock et. al. (I. O. P. Publishing, Bristol, 1990), p.351–366.

    Google Scholar 

  12. S. K. Foong, “Kac’s solution of the telegrapher equation, revisited: Part II,” in Developments in General Relativity, Astrophysics and Quantum Theory, A Jubilee Volume in Honour of Nathan Rosen, eds. F, I. Cooperstock et. al. (I. O. P. Publishing, Bristol, 1990), p.351–366.

    Google Scholar 

  13. E. Orsingher, “ Probability law, flow function, maximum distribution of wave-governed random motions and their connection with Kirchoff’s laws,” Stochastic Process. Appl. 34, 49–66 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Gaveau and L. S. Schulman, “Charged polymer in an electric field,” Phys. Rev. A 42, 3470–3475 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  15. T. Nakamura, “A nonstandard representation of Feynman’s path integrals,” J. Math. Phys. 32(2), 457–463 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. S. K. Foong and U. van Kolck, “Poisson random walk for solving wave equations,” Prog. Theor. Phys. 87, 285–292 (1992)

    Article  ADS  Google Scholar 

  17. D. Mugnai, A. Ranfagni, R. Ruggeri and A. Agresti, “Path integral solution of the telegrapher equation: An application to tunneling time determination,” Phys. Rev. Lett. 68, 259–262 (1992)

    Article  ADS  Google Scholar 

  18. D. G. C. McKeon and G. N. Ord, “Time Reversal in Stochastic Processes and the Dirac Equation” Phys. Rev. Lett. 69, 3–4 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. S. K. Foong, “Path integral solution of the telegrapher equation” in Lectures on Path Integration: Trieste 1991 Adriatico Research Conference, Trieste, Italy, 26 August–6 September 1991, edited by H. Cerdeira et. al., 427-449 (World Scientific, Singapore, 1993)

    Google Scholar 

  20. T. Zastawniak, “Evaluation of the distribution of the random variable \(S\left( t \right) = \int_0^t {{{\left( { - 1} \right)}^{N\left( u \right)}}du} \)]” in Lectures on Path Integration: Trieste 1991 Adriatico Research Conference, Trieste, Italy, 26 August–6 September 1991, edited by H. Cerdeira et. al., 446-448 (World Scientific, Singapore, 1993) (Appendix to Ref. [19])

    Google Scholar 

  21. P. Enders and D. D. Cogan, “The correlated random walk as a general discrete model and as numerical routine,” School of Information Systems, University of East Anglia, England, preprint

    Google Scholar 

  22. S. K. Foong and F. E. Nakamura, “Path integral solutions of telegrapher’s equation: Numerical approach,” in Path Integral from meV to MeV: Tutzing’ 92 (Proceedings of the 4th International Conference on Path Integrals from meV to MeV, Tutzing 1992), edited by H. Grabert, et. al., 268-275 (World Scientific, 1993)

    Google Scholar 

  23. J. Masoliver, J. M. Porra, G. H. Weiss, “SoIutions of the telegrapher’s equation in the presence of reflecting and partly reflecting boundaries,” Phys. Rev. E, 48, 939–944 (1993)

    Article  ADS  Google Scholar 

  24. S. K. Foong and S. Kanno, “Properties of the telegrapher’s random process with or without a trap,” Stochastic Processes and their Appl., 53, p.147–173 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. S. K. Foong, “Overcoming dissipative distortions by a waveform restorer and designer,” J. Math. Phys. (Special Issue on Functional Integration), 36, p.2324–2340 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. C. DeWitt-Morette and P. Cartier, “A new perspective on functional integration” Path Integrals: Dubna’ 96 (Proceedings of the Dubna Joint Meeting of Int. Seminar “Path Integrals: Theory& Applications” and “5th Int. Conf. “Path Integrals from meV to MeV”), Edited by V. S. Yarunin and M. A. Smondyrev, (JINR, Dubna, 96.5.27-31)

    Google Scholar 

  27. L. H. Kauffman and H. P. Noyes, “Discrete physics and the Dirac equation,” To appear in Physics Letters A.

    Google Scholar 

  28. S. Kanno and S. K. Foong, “Predicting telegraph waveform,” presentation at the Inaugural Conference of APCTP (Asia Pacific Center for Theoretical Physics) (Seoul, 96.6.4-10)

    Google Scholar 

  29. J. A. Stratton, Electromagnetic Theory (McGraw Hill, 1941)

    Google Scholar 

  30. D. D. Joseph and L. Preziosi, “Heat waves,” Rev. Mod. Phys. 61, 41–73 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. D. D. Joseph and L. Preziosi, “Addendum to the paper ‘Heat waves’,” Rev. Mod. Phys. 62, 375–391 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  32. W. Band, Introduction to Mathematical Physics (D. Van Nostrand Company, Inc. 1959)

    Google Scholar 

  33. S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys., 1-89 (1943). Reprinted in Selected papers on Noise and Stochastic Processes, Ed. N. Wax, p.3-91 (Dover, 1954)

    Google Scholar 

  34. L. S. Schulman, Techniques and Applications of Path Integration (John Wiley, New York, 1981)

    MATH  Google Scholar 

  35. K. L. Chung, Elementary Probability Theory with Stochastic Processes, 3rd Ed. (Springer-Verlag, New York, 1979)

    Book  MATH  Google Scholar 

  36. Mathematica, Wolfram Research, Inc. (1988)

    Google Scholar 

  37. D. Zwillinger, Handbook of Differential Equations (Academic Press, 1989)

    Google Scholar 

  38. P. M. Morse, and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953)

    Google Scholar 

  39. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products (Academic Press, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Foong, S.K. (1997). Functional Integration and Wave Propagation. In: DeWitt-Morette, C., Cartier, P., Folacci, A. (eds) Functional Integration. NATO ASI Series, vol 361. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0319-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0319-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0321-1

  • Online ISBN: 978-1-4899-0319-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics