Skip to main content

Regulation of Cold Acclimation

A Complex Interaction of Low Temperature, Light, and Chloroplastic Redox Poise

  • Chapter
Plant Cold Hardiness

Abstract

Exposure to low, non-freezing temperatures induces molecular, morphological, and physiological changes in plants which result in the acquisition of freezing tolerance (Va-sil’yev, 1961; Guy, 1990; Thomashow, 1993; Hughes and Dunn, 1996). Light, through the process of photosynthesis, provides the energy required for the complex metabolic changes of cold acclimation (Dexter, 1933; Tysdall, 1933; Steponkus and Lanphear, 1968; Gusta et al., 1982; Griffith and Mclntyre, 1993). Huner and co-workers have demonstrated that the freezing tolerance of cereals is not only correlated to the capacity to keep QA, the stable quinone electron acceptor of photosystem II (PSII), in the oxidized state, but also to an increased photosynthetic capacity (PSmax) (Huner et al., 1993; Öquist et al., 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alex LA, Simon MI (1994) Protein histidine kinases and signal transduction in prokaryotes and eukaryotes. Trends Genet 10: 133–138

    Article  PubMed  CAS  Google Scholar 

  • Allen JF, Alexciev K, Håkansson G (1995) Regulation by redox signalling. Curr Biol 5: 869–872

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM, Chow WS, Park Y-I (1995) The grand design of photosynthesis: Acclimation of the photosyn-thetic apparatus to environmental cues. Photosynth Res 46: 129–139

    Article  CAS  Google Scholar 

  • Asada K, Heber U, Schreiber U (1992) Pool size of electrons that can be donated to P700+, as determined in intact leaves: Donation to P700+ from stromal components via the intersystem chain. Plant Cell Physiol 33: 927–932

    CAS  Google Scholar 

  • Bourret RB, Borkovich KA, Simon MI (1991) Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu Rev Biochem 60: 401–441

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Chua N-H (1994) Emerging themes of plant signal transduction. Plant Cell 6: 1529–1541

    PubMed  CAS  Google Scholar 

  • Chang C (1996) The ethylene signal transduction pathway in Arabidopsis: an emerging paradigm? Trends Biochem Sci 21: 129–133

    PubMed  CAS  Google Scholar 

  • Chauvin LP, Houde M, Sarhan F (1993) A leaf-specific gene stimulated by light during wheat acclimation to low temperature. Plant Mol Biol 23: 255–265

    Article  PubMed  CAS  Google Scholar 

  • Chauvin LP, Houde M, Sarhan F (1994) Nucleotide sequence of a new member of the freezing tolerance-associated protein family in wheat. Plant Physiol 105: 1017–1018

    Article  PubMed  CAS  Google Scholar 

  • Danon A, Mayfield SP (1994) Light-regulated translation of chloroplast messenger RNAs through redox potential. Science 266: 1717–1719

    Article  PubMed  CAS  Google Scholar 

  • Danyluk J, Sarhan F (1990) Differential mRNA transcription during the induction of freezing tolerance in spring and winter wheat. Plant Cell Physiol 31: 609–619

    CAS  Google Scholar 

  • Dau H (1994) Short-term adaptation of plants to changing light intensities and its relation to photosystem II photochemistry and fluorescence emission. J Photochem Photobiol B: Biol 26: 3–27

    Article  CAS  Google Scholar 

  • Dexter ST (1933) Effects of several environmental factors on the hardening of plants. Plant Physiol 8:123–139

    Article  PubMed  CAS  Google Scholar 

  • Dietz K-J, Schreiber U, Heber U (1985) The relationship between the redox state of Q A and photosynthesis in leaves at various carbon-dioxide, oxygen and light regimes. Planta 166: 219–226

    Article  CAS  Google Scholar 

  • Escoubas J-M, Lomas M, LaRoche J, Falkowski PG (1995) Light intensity regulation of cab gene transcription is signalled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92: 10237–10241

    Article  PubMed  CAS  Google Scholar 

  • Fowler DB, Gusta LV, Tyler NJ (1981) Selection for winter hardiness in wheat. III. Screening methods. Crop Sci 21: 896–901

    Article  CAS  Google Scholar 

  • Gray GR (1996) Cold Acclimation: A complex interaction of low temperature, light and the redox state of photo-system II. PhD thesis. The University of Western Ontario, London, Canada

    Google Scholar 

  • Gray GR, Savitch LV, Ivanov AG, Huner NPA (1996) Photosystem II excitation pressure and development of resistance to photoinhibition. II. Adjustment of photosynthetic capacity in winter wheat and rye. Plant Physiol 110: 61–71

    PubMed  CAS  Google Scholar 

  • Griffith M, Mclntyre HCH (1993) The interrelationship of growth and frost tolerance in winter rye. Physiol Plant 87: 335–344

    Article  Google Scholar 

  • Gusta LV, Chen THH (1987) The physiology of water and temperature stress. In EG Heyne, ed, Wheat and Wheat Improvement, Ed 2. ASA, CSSA, SSSA Inc., pp 115-150

    Google Scholar 

  • Gusta LV, Fowler DB, Tyler NJ (1982) Factors influencing hardening and survival in winter wheat. In PH Li, A Sakai, eds, Plant Cold Hardiness and Freezing Stress. Mechanisms and Crop Implications, Vol 2. Academic Press, New York, pp 23–40

    Chapter  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41: 187–223

    Article  CAS  Google Scholar 

  • Guy CL, Huber JLA, Huber SC (1992) Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiol 100: 502–508

    Article  PubMed  CAS  Google Scholar 

  • Guy CL, Nieme KJ, Brambl J (1985) Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci USA 82: 3673–3677

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Daniel C, Lachapelle M, Allard F, Laliberté S, Sarhan F (1995) Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J 8: 583–593

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Danyluk J, Laliberté JF, Rassart E, Dhindsa RS, Sarhan F (1992a) Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiol 99: 1381–1387

    Article  PubMed  CAS  Google Scholar 

  • Houde M, Dhindsa RS, Sarhan F (1992b) A molecular marker to select for freezing tolerance in Gramineae. Mol Gen Genet 234: 43–48

    PubMed  CAS  Google Scholar 

  • Hughes MA, Dunn MA (1996) The molecular biology of plant acclimation to low temperature. J Exp Bot 47: 291–305

    Article  CAS  Google Scholar 

  • Huner NPA, Maxwell DP, Gray GR, Savitch LV, Krol M, Ivanov AG, Falk S (1996) Sensing environmental temperature change through imbalances between energy supply and energy consumption: redox state of photosystem II. Physiol Plant-in press

    Google Scholar 

  • Huner NPA, Maxwell DP, Gray GR, Savitch LV, Laudenbach DE, Falk S (1995) Photosynthetic response to light and temperature: PSII excitation pressure and redox signalling. Acta Physiol Plant 17: 167–176

    CAS  Google Scholar 

  • Huner NPA, Öquist G, Hurry VM, Krol M, Falk S, Griffith M (1993) Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth Res 37: 19–39

    Article  CAS  Google Scholar 

  • Hurry VM, Strand Å, Tobiæson M, Gardeström P, Öquist G (1995) Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism and carbohydrate content. Plant Physiol 109: 697–706

    PubMed  CAS  Google Scholar 

  • Iuchi S, Lin ECC (1993) Adaptation of Escherichia coli to redox environments by gene expression. Mol Micro-biol 9: 9–15

    Article  CAS  Google Scholar 

  • Krol M, Huner NPA (1985) Growth and development at cold-hardening temperatures. Pigment and benzoquinone accumulation in winter rye. Can J Bot 63: 716–721

    CAS  Google Scholar 

  • Levings CS III, Siedow JN (1995) Regulation by redox poise in chloroplasts. Science 268: 695–696

    Article  PubMed  CAS  Google Scholar 

  • Limin AE, Houde M, Chauvin LP, Fowler DB, Sarhan F (1995) Expression of the cold-induced wheat gene Wcs120 and its homologs in related species and interspecific combinations. Genome 38: 1023–1031

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Wurgler-Murphy SM, Saito H (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369: 242–245

    Article  PubMed  CAS  Google Scholar 

  • Maxwell DP, Falk S, Huner NPA (1995a) Photosystem II excitation pressure and development of resistance to photoinhibition I. Light-harvesting complex II abundance and zeaxanthin content in Chlorella vulgaris. Plant Physiol 107:687–694

    PubMed  CAS  Google Scholar 

  • Maxwell DP, Laudenbach DE, Huner NPA (1995b) Redox regulation of light-harvesting complex II and cab mRNA abundance in Dunaliella salina. Plant Physiol 109: 787–795

    PubMed  CAS  Google Scholar 

  • Monroy AF, Dhindsa RS (1995) Low-temperature signal transduction: Induction of cold acclimation-specific genes of alfalfa by calcium at 25°C. Plant Cell 7: 321–331

    PubMed  CAS  Google Scholar 

  • Ögren E (1991) Prediction of photoinhibition of photosynthesis from measurements of fluorescence quenching components. Planta 184: 538–544

    Article  Google Scholar 

  • Öquist G, Hurry VM, Huner NPA (1993) Low-temperature effects on photosynthesis and correlation with freezing tolerance in spring and winter cultivars of wheat and rye. Plant Physiol 101: 245–250

    PubMed  Google Scholar 

  • Ota IM, Varshavsky A (1993) A yeast protein similar to bacterial two-component regulators. Science 262: 566–568

    Article  PubMed  CAS  Google Scholar 

  • Ouellet F, Houde M, Sarhan F (1993) Purification, characterization and cDNA cloning of the 200 kDa protein induced by cold acclimation in wheat. Plant Cell Physiol 34: 59–65

    PubMed  CAS  Google Scholar 

  • Parkinson JS (1993) Signal transduction schemes of bacteria. Cell 73: 857–871

    Article  PubMed  CAS  Google Scholar 

  • Pearce RS, Dunn MA, Rixon JE, Harrison P, Hughes MA (1996) Expression of cold-inducible genes and frost hardiness in the crown meristem of young barley (Hordeum vulgare L. cv. Igri) plants grown in different environments. Plant Cell Environ 19: 275–290

    Article  CAS  Google Scholar 

  • Pollock CJ, Lloyd EJ (1987) The effect of low growth temperature upon starch, sucrose and fructan synthesis in leaves. Ann Bot 60: 231–235

    CAS  Google Scholar 

  • Roberts DWA (1984) The effect of light on development of the rosette growth habit of winter wheat. Can J Bot 62: 818–822

    Article  Google Scholar 

  • Savitch LV, Maxwell DP, Huner NPA (1996) Photosystem II excitation pressure and photosynthetic carbon metabolism in Chlorella vulgaris. Plant Physiol 111: 127–136

    PubMed  CAS  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In E-D Shulze, MM Caldwell, eds, Ecophysiology of photosynthesis. Springer-Verlag, Berlin, pp 49–70

    Google Scholar 

  • Steponkus PL, Lanphear FO (1968) The role of light in cold acclimation of Hedera helix L. var. Thorndale. Plant Physiol 43: 151–156

    Article  PubMed  CAS  Google Scholar 

  • Stushnoff C, Fowler DB, Brûelé-Babel A (1984) Breeding and selection for resistance to low temperature. In PB Vose, SG Blixt, eds, Crop Breeding. A Contemporary Basis. Pergamon Press, New York, pp 115–136

    Chapter  Google Scholar 

  • Thomashow MF (1993) Genes induced during cold acclimation in higher plants. In PL Steponkus, ed, Advances Low-Temperature Biology, Vol 2. JAI Press, London, pp 183–210

    Google Scholar 

  • Trewavas A, Gilroy S (1991) Signal transduction in plant cells. Trends Genet. 7: 356–361

    PubMed  CAS  Google Scholar 

  • Tysdal HM (1933) Influence of light, temperature, and soil moisture on the hardening process in alfalfa. J Agr Res 46:483–515

    Google Scholar 

  • Vanlerberghe GC, Day DA, Wiskich JT, Vanlerberghe AE, Mclntosh L (1995) Alternative oxidase activity in tobacco leaf mitochondria. Dependence on tricarboxylic acid cycle-mediated redox regulation and pyru-vate activation. Plant Physiol 109: 353–631

    PubMed  CAS  Google Scholar 

  • Vasil’yev IM (1961) Wintering of Plants. American Institute of Biological Sciences, Washington DC

    Google Scholar 

  • Verhey SD, Lomax TL (1993) Signal transduction in vascular plants. J Plant Growth Regul 12: 179–195

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gray, G.R., Chauvin, LP., Sarhan, F., Huner, N.P.A. (1997). Regulation of Cold Acclimation. In: Li, P.H., Chen, T.H.H. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0277-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0277-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0279-5

  • Online ISBN: 978-1-4899-0277-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics