Skip to main content

Effect of Cold Acclimation on Membrane Lipid Composition and Freeze-Induced Membrane Destablization

  • Chapter

Abstract

Freezing injury is primarily a consequence of membrane destabilization resulting from freeze-induced dehydration (Steponkus, 1984). Although all cellular membranes are vulnerable to freeze-induced destabilization, the plasma membrane is of primary importance because of the critical role it plays during a freeze/thaw cycle. The plasma membrane is the principal interface between the extracellular medium and the cytoplasm and acts as a semipermeable barrier allowing for the efflux/influx of water during a freeze/ thaw cycle. In addition, the plasma membrane prevents seeding of the intracellular solution by extracellular ice. Thus, whether the cell survives during a freeze/thaw cycle is ultimately a consequence of the stability of the plasma membrane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anchordoguy TJ, Rudolph AS, Carpenter JF, Crowe JH (1987) Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24: 324–331

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM (1993) Preservation of liposomes by freeze-drying. In G Gregoriadis, ed, Liposome Technology: Liposome Preparation and Related Techniques: Vol 1, Ed 2, CRC Press, Boca Raton, pp 229–282

    Google Scholar 

  • Crowe JH, Crowe LM, Carpenter JF, Rudolph AS, Wistrom CA, Spargo BJ, Anchordoguy TJ (1988) Interactions of sugars with membranes. Biochim Biophys Acta 947: 367–384

    Article  PubMed  CAS  Google Scholar 

  • Cudd A, Steponkus PL (1988) Lamellar-to-hexagonal II phase transitions in liposomes of rye plasma membrane lipids after osmotic dehydration. Biochim Biophys Acta 941: 278–286

    Article  CAS  Google Scholar 

  • Cullis PR, De Kruijff B (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta 559: 399–420

    Article  PubMed  CAS  Google Scholar 

  • Dowgert MF, Steponkus PL (1984) Behavior of the plasma membrane of isolated protoplasts during a freeze-thaw cycle. Plant Physiol 75: 1139–1151

    Article  PubMed  CAS  Google Scholar 

  • Fujikawa S, Steponkus PL (1990) Freeze-induced alterations in the ultrastructure of the plasma membrane of rye protoplasts isolated from cold-acclimated leaves. Cryobiology 27: 665–666

    Google Scholar 

  • Gordon-Kamm WJ, Steponkus PL (1984a) The behavior of the plasma membrane following osmotic contraction of isolated protoplasts: implications in freezing injury. Protoplasma 123: 83–94

    Article  Google Scholar 

  • Gordon-Kamm WJ, Steponkus PL (1984b) Lamellar-to-hexagonal II phase transitions in the plasma membrane of isolated protoplasts after freeze-induced dehydration. Proc Natl Acad Sci USA 81: 6373–6377

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Kamm WJ, Steponkus PL (1984c) The influence of cold acclimation on the behavior of the plasma membrane following osmotic contraction of isolated protoplasts. Protoplasma 123: 161–173

    Article  Google Scholar 

  • Gounaris K, Sen A, Brain APR, Quinn PJ, Williams WP (1983) The formation of non-bilayer structures in total polar lipid extracts of chloroplast membranes. Biochim Biophys Acta 728: 129–139

    Article  CAS  Google Scholar 

  • Gruner SM (1989) Stability of lyotropic phases with curved interfaces. J Phys Chem 93: 7562–7570

    Article  CAS  Google Scholar 

  • Gruner SM, Cullis PR, Hope MJ, Tilcock CPS (1985) Lipid polymorphism: the molecular basis of nonbilayer phases. Annu Rev Biophys Biophys Chem 14: 211–238

    Article  PubMed  CAS  Google Scholar 

  • Hincha DK, Sieg F, Bakaltcheva I, Köth H, Schmitt JM (1996) Freeze-thaw damage to thylakoid membranes: specific protection by sugars and proteins. In Advances in Low-Temperature Biology, PL Steponkus, ed, Vol 3, JAI Press, London, pp 141–183

    Chapter  Google Scholar 

  • Koster KL, Lynch DV (1992) Solute accumulation and compartmentation during the cold acclimation of Puma rye. Plant Physiol 98: 108–113

    Article  PubMed  CAS  Google Scholar 

  • Lynch DV, Steponkus PL (1987) Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma). Plant Physiol 83: 761–767

    Article  PubMed  CAS  Google Scholar 

  • Quinn PJ, Williams WP (1983) The structural role of lipids in photosynthetic membranes. Biochim Biophys Acta 737: 223–266

    Article  CAS  Google Scholar 

  • Shipley GG, Green JP, Nicholes BW (1973) The phase behavior of monogalactosyl, digalactosyl, and sulphoqui-novosyl diglycerides. Biochim Biophys Acta 311: 531–544

    Article  PubMed  CAS  Google Scholar 

  • Siegel DP (1986a) Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. I. Mechanism of the La-H11 phase transitions. Biophys J 49: 1155–1170

    Article  PubMed  CAS  Google Scholar 

  • Siegel DP (1986b) Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion. Biophys J 49: 1171–1183

    Article  PubMed  CAS  Google Scholar 

  • Siegel DP (1986c) Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal amphiphile phases. III. Isotropic and inverted cubic state formation via intermediates in transitions between La and H11 phases. Chem Phys Lipids 42: 279–301

    Article  PubMed  CAS  Google Scholar 

  • Siegel DP (1987) Membrane-membrane interactions via intermediates in lamellar-to-inverted hexagonal phase transitions. In Cell Fusion, AE Sowers, ed, Plenum Press, New York, pp 81–208

    Google Scholar 

  • Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Physiol 35: 543–584

    Article  CAS  Google Scholar 

  • Steponkus PL, Lynch DV (1989a) Freeze/thaw-induced destabilization of the plasma membrane and the effects of cold acclimation. J Bioenerg Biomembr 21: 21–41

    Article  PubMed  CAS  Google Scholar 

  • Steponkus PL, Lynch DV (1989b) The behavior of large unilamellar vesicles of rye plasma membrane lipids during freeze/thaw-induced osmotic excursions. Cryo-Letters 10: 43–50

    Google Scholar 

  • Steponkus PL, Lynch DV, Uemura M (1990) The influence of cold acclimation on the lipid composition and cryobehaviour of the plasma membrane of isolated rye protoplasts. Philos Trans R Soc Lond B 326: 571–583

    Article  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Balsamo RA, Arvinte T, Lynch DV (1988) Transformation of the cryobehavior of rye protoplasts by modification of the plasma membrane lipid composition. Proc Natl Acad Sci USA 85: 9026–9030

    Article  PubMed  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Webb MS (1993) A contrast of the cryostability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In Advances in Low-Temperature Biology, PL Steponkus, ed, Vol 2, JAI Press, London, pp 211–312

    Google Scholar 

  • Sugawara Y, Steponkus PL (1990) Effect of cold acclimation and modification of the plasma membrane lipid composition on lamellar-to-hexagonal, phase transitions in rye protoplasts. Cryobiology 27: 667

    Google Scholar 

  • Tate MW, Eikenberry EF, Turner DC, Shyamsunder E, Gruner SM (1991) Nonbilayer phases of membrane lipids. Chem Phys Lipids 57: 147–164

    Article  PubMed  CAS  Google Scholar 

  • Uemura M, Steponkus PL (1989) Effect of cold acclimation on the incidence of two forms of freezing injury in protoplasts isolated from rye leaves. Plant Physiol 91: 1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Uemura M, Steponkus PL (1994) A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol 104: 479–496

    PubMed  CAS  Google Scholar 

  • Uemura M, Steponkus PL Effect of cold acclimation on the lipid composition of the inner and outer membrane of the chloroplast envelope isolated from rye leaves. (Submitted for publication in Plant Physiology).

    Google Scholar 

  • Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana: effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 109: 15–30.

    PubMed  CAS  Google Scholar 

  • Webb MS, Steponkus PL (1993) Freeze-induced membrane ultrastructural alterations in rye (Secale cereale) leaves. Plant Physiol 101: 955–963

    PubMed  CAS  Google Scholar 

  • Webb MS, Uemura M, Steponkus PL (1994) A comparison of freezing injury in oat and rye: two cereals at the extremes of freezing tolerance. Plant Physiol 104: 467–478

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Uemura, M., Steponkus, P.L. (1997). Effect of Cold Acclimation on Membrane Lipid Composition and Freeze-Induced Membrane Destablization. In: Li, P.H., Chen, T.H.H. (eds) Plant Cold Hardiness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0277-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0277-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0279-5

  • Online ISBN: 978-1-4899-0277-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics