Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 406))

Abstract

T cell activation is initiated by engagement of the T cell receptor (TCR)-CD3 complex by antigen displayed by major histocompatibility complex (MHC) molecules expressed on the surface of an antigen presenting cell (APC). However, under most circumstances, this initial signal is insufficient to induce a proliferative response. TCR engagement in the absence of a second or costimulatory signal can lead to a state of anergy or cell death1. CD28 is a T cell surface receptor capable of providing this critical second signal following ligation of the B7 family of counter-receptors that are expressed on APCs2,3. This interaction provides not only proliferative signals, but also crucial survival signals that are important for both initiation and maintenance of an immune response4,5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.H. Schwartz, A cell culture model for T Lymphocyte clonal anergy, Science. 248: 1349 (1990).

    Article  PubMed  CAS  Google Scholar 

  2. C.D. Gimmi, G.J. Freeman, J.G. Gribben, K. Sugita, A.S. Freedman, C. Morimoto, and L.M. Nadler, B-cell surface antigen B7 provides a costimulatory signal that induces T cells to proliferate and secrete interleukin 2, Proc. Natl. Acad. Sci. USA 88: 6575 (1991).

    Article  PubMed  CAS  Google Scholar 

  3. N.K. Damle, L.V. Doyle, L.S. Grosmaire, and J.A. Ledbetter, Differential regulatory signals delivered by antibody binding to the CD28 (Tp 44) molecule during the activation of human T lymphocytes, J. Immunol. 140: 1753 (1988)

    PubMed  CAS  Google Scholar 

  4. J.M. Green, P.J. Noel, A.I. Sperling, T.L. Walunas, G.S. Gray, J.A. Bluestone, and C.B. Thompson, Absence of B7-dependent responses in CD28- deficient mice, Immunity. 1: 501 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. Y. Shi, L.G. Radvanyi, A. Sharma, P. Shaw, D.R. Green, R.G. Miller, and G.B. Mills, CD28-mediated signaling in vivo prevents activation-induced apoptosis in the thymus and alters peripheral lymphocyte homeostasis, The Journal of Immunology. 155:1829 (1995).

    Google Scholar 

  6. T. Lindsten, C.H. June, J.A. Ledbetter, G. Stella, and C.B. Thompson, Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway, Science. 244: 339 (1989).

    Article  CAS  Google Scholar 

  7. C.B. Thompson, T. Lindsten, J.A. Ledbetter, S.L. Kunkel, H.A. Young, S.G. Emerson, J.M. Leiden, and C.H. June, CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines, Proc. Natl. Acad. Sci. USA. 86: 1333 (1989).

    Article  PubMed  CAS  Google Scholar 

  8. L.H. Boise, A.J. Minn, P.J. Noel, C.H. June, M. Accavitti, T. Lindsten, and C.B. Thompson, CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-xL, Immunity. 3: 87 (1995).

    Article  PubMed  CAS  Google Scholar 

  9. D. Kabelitz and S. Wesselborg, Life and death of a superantigen-reactive human CD4 + T cell clone: staphylococcal enterotoxins induce death by apoptosis but simultaneously trigger a proliferative response in the presence of HLA-DR+ antigen-presenting cells, International Immunology. 4: 1381 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. H. Groux, D. Monte, B. Plouvier, A. Capron, and J.-C. Ameisen, CD3-mediated apoptosis of human medullary thymocytes and activated peripheral T cells: respective roles of interleukin-1, interleukin-2, interferon-y and accessory cells, Eur. J. Immunol. 23: 1623 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. D.J. Veis, C.L. Sentman, E.A. Bach, and S.J. Korsmeyer, Expression of the Bel- 2 protein in murine and human thymocytes and in peripheral T lymphocytes, The Journal of Immunology. 151: 2546 (1993).

    PubMed  CAS  Google Scholar 

  12. K-i. Nakayama, K. Nakayama, I. Negishi, K. Kuida, Y. Shinkai, M.C. Louie, L.E. Fields, P.J. Lucas, V. Stewart, F.W. Alt, and D.Y. Loh, Disappearance of the lymphoid system in Bcl-2 homozygous mutant chimeric mice, Science. 261: 1584 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. C.M. Chleq-Deschamps, D.P. LeBrun, P. Huie, D.P. Besnier, R.A. Warnke, R.K. Sibley, and M.L. Cleary, Topographical dissociation of BCL-2 messenger RNA and protein expression in human lymphoid tissues, Blood. 81: 293 (1993).

    PubMed  CAS  Google Scholar 

  14. P.J. Noel, L.H. Boise, J.M. Green, and C.B. Thompson, CD28 costimulation prevents cell death during primary T cell activation, submitted. (1995).

    Google Scholar 

  15. C. Klas, K.-M. Debatin, R.R. Jonker, and P.H. Krammer, Activation interferes with the APO-1 pathway in mature human T-cells, International Immunology. 5: 625 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. B.C. Trauth, C. Klas, A.M.J. Peters, S. Matzku, P. Möller, W. Falk, K.-M. Debatin, P.H. Krammer, Monoclonal antibody-mediated tumor regression by induction of apoptosis, Science. 245: 301 (1989).

    Article  PubMed  CAS  Google Scholar 

  17. N. Itoh, S. Yonehara, A. Ishii, M. Yonehara, S.-I. Mizushima, M. Sameshima, A. Hase, Y. Seto, and S. Nagata, The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis, Cell. 66: 233 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. S. Nagata and P. Golstein, The Fas death factor, Science. 267: 1449 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. K. Harper, C. Balzano, E. Rouvier, M.-G. Mattéi, M.-F. Luciani, and P. Golstein, CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location, The Journal of Immunology. 147: 1037 (1991).

    PubMed  CAS  Google Scholar 

  20. J.-F. Brunet, F. Denizot, M.-F. Luciani, M. Roux-Dosseto, M. Suzan, M.-G. Mattei, and P. Golstein, A new member of the immunoglobulin superfamily- CTLA-4, Nature. 328: 267 (1987).

    Article  PubMed  CAS  Google Scholar 

  21. T. Lindsten, K.P. Lee, E.S. Harris, B. Petryniak, N. Craighead, P.J. Reynolds, D.B. Lombard, G.J. Freeman, L.M. Nadler, G.S. Gray, C.B. Thompson, and C.H. June, Characterization of CTLA-4 structure and expression on human T cells, The Journal of Immunology. 151: 3489 (1993).

    PubMed  CAS  Google Scholar 

  22. G.J. Freeman, D.B. Lombard, C.D. Gimmi, S.A. Brod, K. Lee, J.C. Laning, D.A. Hafler, M.E. Dorf, G.S. Gray, H. Reiser, C.H. June, C.B. Thompson, and L.M. Nadler, CTLA-4 and CD28 mRNA are coexpressed in most T cells after activation: expression of CTLA-4 and CD28 mRNA does not correlate with the pattern of lymphokine production, The Journal of Immunology. 149: 3795 (1992).

    PubMed  CAS  Google Scholar 

  23. T.L. Walunas, D.J. Lenschow, C.Y. Bakker, P.S. Linsley, G.J. Freeman, J.M. Green, C.B. Thompson, and J.A. Bluestone, CTLA-4 can function as a negative regulator of T cell activation, Immunity. 1: 405 (1994).

    Article  PubMed  CAS  Google Scholar 

  24. P.S. Linsley, J.L. Greene, P. Tan, J. Bradshaw, J.A. Ledbetter, C. Anasetti, and N.K. Damle, Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes, J. Exp. Med. 176: 1595 (1992).

    Article  PubMed  CAS  Google Scholar 

  25. P.S. Linsley, W. Brady, M. Urnes, L.S. Grosmaire, N.K. Damle, and J.A. Ledbetter, CTLA-4 is a second receptor for the B cell activation antigen B7, J. Exp. Med. 174: 561 (1991).

    Article  PubMed  CAS  Google Scholar 

  26. J.G. Gribben, G.J. Freeman, V.A. Boussiotis, P. Rennert, C.L. Jellis, E. Greenfield, M. Barber, V.A. Restivo, Jr., X. Ke, G.S. Gray, and L.M. Nadler, CTLA4 mediates antigen-specific apoptosis of human T cells, Proc. Natl. Acad. Sci. USA. 92: 811 (1995).

    Article  PubMed  CAS  Google Scholar 

  27. P. Waterhouse, J.M. Penninger, E. Timms, A. Wakeham, A. Shahinian, K.P. Lee, C.B. Thompson, H. Griesser, and T.W. Mak, Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4, Science. 270: 985 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Noel, P.J., Boise, L.H., Thompson, C.B. (1996). Regulation of T Cell Activation by CD28 and CTLA4. In: Gupta, S., Cohen, J.J. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation VI. Advances in Experimental Medicine and Biology, vol 406. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0274-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0274-0_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0276-4

  • Online ISBN: 978-1-4899-0274-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics