Skip to main content

Magnetic Resonance Imaging of Tall Fescue

  • Chapter
Neotyphodium/Grass Interactions

Abstract

Magnetic resonance imaging (MRI) has proven to be a valuable tool to radiologists since its introduction in the early 1 970’s (Esser and Johnson, 1984). The advent of stable high-field, superconducting magnets has made it possible to carry out high resolution MRI microscopy experiments in the laboratory environment (Callaghan, 1991). When nuclei, such as hydrogen are placed in a static magnet field, the spins of the nuclei will align with the external field. These nuclei will then reach a state of thermal equilibrium with respect to their environment. A radiofrequency (RF) signal, which is dependent on the magnetic field strength, is applied to the sample that is in thermal equilibrium. The nuclei absorb this energy and flip out of alignment with the magnetic field. After the RF pulse, the system is allowed to return to thermal equilibrium and the energy given off is detected. The frequency of the energy that is emitted is known as the Nuclear Magnetic Resonance (NMR)) frequency. In MRI this signal is spatially encoded by the selective application of three magnetic field gradients along the X, Y, and Z axis. The spatially encoded NMR signal is Fourier transformed into a peak, it is then converted into a gray scale image based on the intensity of the resultant peak. The brighter the area of the image, the more intense the signal which is related to the quantity of nuclei present in the sample and to their environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, C.L., G.W. Kalbalka and P.M.Gresshoff. “The High Resolution 1H MRI Investigation of the Soybean (Glycine max. L.) Root System.” Submitted Plant Cell.

    Google Scholar 

  • Callaghan, P.T. 1991. Principles of Nuclear Magnetic Resonance Microscopy New York: Clarendon Press.

    Google Scholar 

  • Esser, P.D., and R.E. Johnston. 1984. Technology Of Nuclear Magnetic Resonance. New York: The Society of Nuclear Medicine.

    Google Scholar 

  • Nesbitt, G.J., T.W. Fens, J.S. van den Brink, and J.S., Roberts. 1992. Evaluation of Fluid Displacement in Porous Media Using NMR Microscopy. Magnetic Resonance Microscopy, Methods and Application In Materials Science, Agriculture and Biomedicine. New York: VCH.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, C.L., Dyke, J.P., Green, J.F., Gwinn, K.D., Kabalka, G.W. (1997). Magnetic Resonance Imaging of Tall Fescue. In: Bacon, C.W., Hill, N.S. (eds) Neotyphodium/Grass Interactions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0271-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0271-9_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0273-3

  • Online ISBN: 978-1-4899-0271-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics