Skip to main content

Electrolytic Reactor Design, Selection, and Scale-up

  • Chapter
Electrochemical Process Engineering

Abstract

We mentioned in Section 1.3 some important industrial applications of electrolysis—in the chloralkali industry, metal winning and refining, and organic electrosynthesis. As indicated in Section 1.2, we do not intend to describe electrochemical processes in detail, since there are many books on electrochemical technology.’ We will discuss the design of individual reactors, with emphasis on modularized, general purpose flow electrolyzers. We will classify reactors by their mode of operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pletcher, D. and Walsh, F. C., 1990, Industrial Electrochemistry“, 2d ed., Chapman & Hall, New York.

    Google Scholar 

  2. Blackmar, G. E., U.S. Patent no. 3,573, 178 (1971).

    Google Scholar 

  3. Fleet, B. and Gupta, S. D., 1976, Novel electrochemical reactor, Nature (London), 263: 5573, 122–123.

    Article  CAS  Google Scholar 

  4. Backhurst, J. R., Coulson, J. M., Goodridge, F., Plimley, R. E., and Fleischmann, M., 1969, “A Preliminary investigation of fluidised bed electrodes”, J. Electrochem. Soc., 116: 1600–1607 (1969).

    Article  Google Scholar 

  5. Goodridge, F. and Wright, A. R., 1983, “Porous flow-through and fluidised bed electrodes,” in Comprehensive Treatise of Electrochemistry, Vol. 6, ( E. Yeager, J. O’M. Bockris, and S. Sarangapany, eds.) Plenum Press, pp. 393–443.

    Google Scholar 

  6. Hughes, D., 1988, “The dished electrode membrane cell facilitates wide range of syntheses,” Spec. Chem., 8: 16, 17.

    CAS  Google Scholar 

  7. Carlsson, L., Holmberg, H., Johansson, B., and Nilsson, A., 1982, “Design of a multipurpose modularised electrochemical cell,” in Techniques of Electroorganic Synthesis, III, ( N. L. Weinberg and B. V. Tilak, eds.), John Wiley & Sons, New York, pp. 179–194.

    Google Scholar 

  8. Brooks, W. N. 1986, “The ICI (Mond) FM21 cell as a multipurpose electrolyser, Instit. Chem. Eng. Symp. Ser., Electrochemical Engineering,98: 1–12, 320–321.

    Google Scholar 

  9. Degner, D., 1982, “Scale-up of electroorganic processes: Some examples for a comparison of electrochemical syntheses with conventional syntheses,” in Weinberg and Tilak, eds., p. 256.

    Google Scholar 

  10. Jansson, R. E. W., Marshall, R. J., and Rizzo, J. E., 1978, “The rotating electrolyser. I: The velocity field,” J. Appl. Electrochem. 8: 281–285; R. E. W. Jansson and R. J. Marshall, “The rotating electrolyser II: Transport properties and design equations,” J. Appl. Electrochem., 287–291.

    Google Scholar 

  11. Udupa, H. V. K. and Udupa, K. S., 1982, “Use of rotating electrodes for small-scale electroorganic processes,” in Weinberg and Tilak, eds., pp. 385–422.

    Google Scholar 

  12. Holland, F. S., 1978, “The development of the Eco-Cell Process,” Chem. Ind. (London) 7: 453–458.

    Google Scholar 

  13. Robertson, P. M., Berg, P., Reimann, H., Schleich, K., and Seiler, P., 1983, “Application of the Swiss-Roll Cell in vitamin-C production,” J. Electrochem. Soc. 130: 591–596.

    Article  CAS  Google Scholar 

  14. Robertson, P. M., Cettou, P., Matic, D., Schwager, F., Storck, A., and Ibl, N., 1979, “Electrosynthesis with the Swiss-Roll Cell. Properties of the cell components and their selection for electrosynthesis,” Am. Instit. Chem. Eng. Symp. Ser. Electroorganic Synthesis Technology, 75: 115–124.

    CAS  Google Scholar 

  15. Oloman, C., 1979, “Trickle bed electrochemical reactors,” J. Electrochem. Soc., 126: 1885–1892.

    Article  CAS  Google Scholar 

  16. Goodridge, F., Harrison, S., and Plimley, R. E., 1986, “The electrochemical production of propylene oxide,” J. Electroanal. Chem. Interfacial Electrochem., 214: 283–293.

    Article  CAS  Google Scholar 

  17. Feess, H. and Wendt, H., 1982, “Performance of two-phase-electrolyte electrolysis,” in Weinberg and Tilak, eds., pp. 81–177.

    Google Scholar 

  18. Dafana, R., 1987, The Design and Performance of a Novel Electropulse Column, Ph.D. dissertation, University of Newcastle upon Tyne, U.K.

    Google Scholar 

  19. MacMullin, R. B., 1963, “The problem of scale-up in electrolytic processes,” Electrochem. Technol., 1: 5–17.

    Google Scholar 

  20. Coulson, J. M. and Richardson, J. F., Chemical Engineering,Vol. 1, 4th ed., Pergamon Press, pp. 9–15.

    Google Scholar 

  21. Johnstone, R. E. and Thring, M. W., 1967, Pilot Plants, Models and Scale-up Methods in Chemical Engineering, McGraw-Hill, New York.

    Google Scholar 

  22. Johnstone and Thring, p. 80.

    Google Scholar 

  23. Damkohler, G., 1936, “The influence of flow, diffusion and heat transfer on the performance of reaction furnaces. I. General considerations of the transfer of chemical processes from small to large size equipment,” Z. Elektrochem., 42: 846–862.

    CAS  Google Scholar 

  24. Johnstone and Thring, p. 90.

    Google Scholar 

  25. Wragg, A. A., Tagg, D. J., and Patrick, M. A., 1980, “Diffusion controlled current distributions near cell entries and corners,” J. Appl. Electrochem., 10: 43–47.

    Article  CAS  Google Scholar 

  26. Goodridge, F., Mamoor, G. M., and Plimley, R. E., 1986, “Mass transfer rates in baffled electrochemical cells,” Inst. Chem. Eng., Symp. Ser., 98: pp. 61–71.

    Google Scholar 

  27. Hine, F., 1985, Electrode Processes and Electrochemical Engineering, Plenum Press, New York, p. 313.

    Book  Google Scholar 

  28. Parrish, W. R. and Newman, J., 1969, “Current distribution on a plane electrode below the limiting current,” J. Electrochem. Soc., 116: 169–172.

    Article  Google Scholar 

  29. Parrish, W. R. and Newman, J., 1970, “Current distribution on plane parallel electrodes in channel flow,” J. Electrochem. Soc., 117: 43–48.

    Article  CAS  Google Scholar 

  30. Pickett, D. J., Electrochemical Reactor Design,2d ed., Elsevier Scientific Publishing, New York, p. 114.

    Google Scholar 

  31. Ibl, N., 1983, “Current Distribution,” in Comprehensive Treatise of Electrochemistry, Vol. 6, ( E. Yeager, J. O’M. Bockris, and S. Sarangapany, eds.) Plenum Press, New York, pp. 239–315.

    Google Scholar 

  32. Wagner, C., 1951, “Theoretical analysis of the current distribution in electrolytic cells,” J. Electrochem. Soc., 98: 116–128.

    Article  CAS  Google Scholar 

  33. Viswanathan, K., and Chin, D. T., 1977, “Current distribution on a continuous moving sheet electrode,” J. Electrochem. Soc., 124: 709–713.

    Article  CAS  Google Scholar 

  34. Lapicque, F. and Storck, A., 1985, “Modelling of a continuous parallel plate plug flow electrochemical reactor: Electrowinning of copper,” J. Appl. Electrochem., 15: 925–935.

    Article  CAS  Google Scholar 

  35. De La Rue, R. E. and Tobias, C., 1959, “On the conductivity of dispersions,” J. Electrochem. Soc., 106: 827–833.

    Article  Google Scholar 

  36. Tobias, C. W., 1959, “Effect of gas evolution on current distribution and ohmic resistance in electrolysers,” J. Electrochem. Soc., 106: 833–838.

    Article  CAS  Google Scholar 

  37. Hine, p. 89.

    Google Scholar 

  38. Nishiki, Y., Aoki, K., Tokuda, K., and Matsuda, H., 1986, “Effect of gas evolution on current distribution and ohmic resistance in a vertical cell under forced convection conditions,” J. Appl. Electrochem., 16: 615–625.

    Article  CAS  Google Scholar 

  39. Pickett, p. 347.

    Google Scholar 

  40. Tobias, C. W. and Wijsman, R., 1953, “Theory of the effect of electrode resistance on current density distribution in electrolytic cells,” J. Electrochem. Soc., 100: 459–467.

    Article  CAS  Google Scholar 

  41. Hine, p. 329.

    Google Scholar 

  42. Goodridge, F. and Hamilton, M. A., 1980, “The behaviour of a fixed bed porous flow-through electrode during the production of p-amino phenol,” Electrochim. Acta, 25: 481–486.

    Article  CAS  Google Scholar 

  43. Goodridge, F., Plimley, R. E., and Leetham, R. P., (1985) Purifying Mixed-Cation Electrolyte, Eur. Pat. Appt EP 197, 769.

    Google Scholar 

  44. Scott, K. and Lui, W. K., 1986, “The performance of a moving bed electrode during the electrowinning of cobalt,” Inst. Chem. Eng., Symp. Ser., 98: 143–154.

    Google Scholar 

  45. Scott, K., 1982, “The effectiveness of particulate bed electrodes under activation control,” Electrochim. Acta, 27: 447–451.

    Article  CAS  Google Scholar 

  46. Weise, L., Giron, M., Valentin, G., and Storck, A., “A chemical engineering approach to selectivity analysis in electrochemical reactors,” Inst. Chem. Eng., Symp. Ser., 98: 49–59.

    Google Scholar 

  47. Storck, A., Enriques-Granados, M., and Roger, M., 1982, “The behaviour of porous electrodes in a flow-by regime. I. Theoretical study,” Electrochim. Acta, 27: 293–301.

    Article  CAS  Google Scholar 

  48. Pickett, pp. 362–388.

    Google Scholar 

  49. Scott, K., 1986, “Electrolytic reduction of oxalic acid to glyoxylic acid: A problem of electrode deactivations,” Chem. Eng. Res. and Des., 64: 266–271.

    CAS  Google Scholar 

  50. Michelet, D., 1974, “Glyoxylic acid,” Ger. Offen., 2, 359, 863.

    Google Scholar 

  51. Pletcher, D., and Razaq, M., 1981, “The reduction of acetophenone to ethylbenzene at a platinised platinum electrode,” Electrochim. Acta, 26: 819–824.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goodridge, F., Scott, K. (1995). Electrolytic Reactor Design, Selection, and Scale-up. In: Electrochemical Process Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0224-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0224-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0226-9

  • Online ISBN: 978-1-4899-0224-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics