Skip to main content

Overview of Tumor-Inhibiting Non-Platinum Compounds

  • Chapter

Abstract

Cancer mortality in the western world is still on the increase today. In the last few decades, platinum and other metal coordination compounds have been the subject of numerous investigations in the field of cancer chemotherapy. Cisplatin and its derivatives feature prominently here (Figure 1)1,2,3,4. One of the reasons why tumor-inhibiting non-platinum compounds are receiving increasing attention is the fact that cisplatin and other platinum complexes have a relatively limited spectrum of indication. Cisplatin shows its best activity in testicular carcinomas and has good activity in ovarian carcinomas, tumors of the head and neck and bladder tumors2,3,4. It is not, or only insufficiently, active against the tumors that account for the major share of cancer mortality today, such as tumors of the lung and the gastrointestine. The synthesis of new compounds which are active in these platinum-resistant tumors must therefore be one of the aims in inorganic chemistry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Rosenberg, Platinum complexes for the treatment of cancer, Interdiscipl. Science Rev. 3, 2, 134 (1978).

    Article  CAS  Google Scholar 

  2. A.W. Prestayko, S.T. Crooke, and S.K. Carter, eds., “Cisplatin — Current status and new developments”, Academic Press, New York (1980).

    Google Scholar 

  3. D.C.H. McBrien and T.F. Slater, eds., “Biochemical mechanisms of platinum antitumour drugs”, IRL Press, Oxford (1986).

    Google Scholar 

  4. St. Howell, ed., “Platinum and other metal coordination compounds in cancer chemotherapy”, Plenum Press, New York (1991).

    Google Scholar 

  5. B.K. Keppler, M.R. Berger, Th. Klenner, and M.E. Heim, Metal complexes as antitumour agents, Adv. Drug Res. 19:243 (1990).

    CAS  Google Scholar 

  6. R. Sephton and S. De Abrew, Mechanism of gallium uptake in tumours, in: “Metal Ions in Biology and Medicine”, Ph. Collery, L.A. Poirier, M. Manfait, and J.C. Etienne, eds., John Libbey Eurotext, Paris (1990).

    Google Scholar 

  7. J.L. Domingo and J. Corbella, A review of the pharmacological and toxicological properties of gallium, in: “Metal Ions in Biology and Medicine”, Ph. Collery, L.A. Poirier, M. Manfait, and J.C. Etienne, eds., John Libbey Eurotext, Paris (1990).

    Google Scholar 

  8. Ph. Collery and C. Pechery, Clinical experience with tumor-inhibiting gallium complexes, in: “Metal Complexes in Cancer Chemotherapy”, B.K. Keppler, ed., VCH Weinheim (1993).

    Google Scholar 

  9. D. Lekim and L. Samochowiec, eds., “Germanium in biologischen Systemen”, Semmelweis Verlag, Hoya(1985).

    Google Scholar 

  10. M. Slavik, O. Blanc, and J. Davis, Spirogermanium: A new investigational drug of novel structure and lack of bone marrow toxicity. Invest New Drugs 1:225 (1983).

    CAS  PubMed  Google Scholar 

  11. K. Miyao, T. Onishi, K. Asai, S. Tomizawa, and F. Suzuki, Toxicology and phase I studies on a novel organogermanium compound, Ge-132, in: “Current Chemotherapy and Infectious Disease”, J.D. Nelson, C. Grassi, eds., The American Society for Microbiology, Washington DC (1980).

    Google Scholar 

  12. S.G. Ward and R.C. Taylor, Anti-tumor activity of the main-group metallic elements: aluminum, gallium, indium, thallium, germanium, lead, antimony and bismuth, in: “Metal-Based Anti-Tumour Drugs”, M.F. Gielen, ed., Freund Publishing House, London (1988).

    Google Scholar 

  13. B.K. Keppler, C. Friesen, H.G. Moritz, H. Vongerichten, and E. Vogel, Tumor-inhibiting bis(β-dike-tonato) metal complexes. Budotitane, cis-diemoxybis(1-phenylbutane-1,3-dionato)titanium(IV), the first transition metal complexes after platinum complexes to have qualified for clinical trials. Structure & Bonding 78:97 (1991).

    Article  CAS  Google Scholar 

  14. B.K. Keppler, C. Friesen, H. Vongerichten, and E. Vogel, Budotitane, a new tumor-inhibiting titanium compound: preclinical and clinical development, in: “Metal Complexes in Cancer Chemotherapy”, B.K. Keppler, ed., VCH Weinheim (1993).

    Google Scholar 

  15. P. Köpf-Maier, Antitumor bis(cyclopentadienyl)metal complexes, in: “Metal Complexes in Cancer Chemotherapy”, B.K. Keppler, ed., VCH Weinheim (1993).

    Google Scholar 

  16. Ph. Collery, M. Morel, H. Millart, B. Desoize, C. Cossart, D. Perdu, H. Vallerand, J.C. Bouana, C. Pechery, J.C. Etienne, H. Choisy, and J.M. Dubois de Montreynaud, Oral administration of gallium in conjunction with platinum in lung cancer treatment, in: “Metal Ions in Biology and Medicine”, Ph. Collery, L.A. Poirier, M. Manfait, and J.C. Etienne, eds., John Libbey Eurotext, Paris (1990).

    Google Scholar 

  17. Ph. Collery, H. Vallerand, A. Prevost, D. Milosevic, M. Morel, J.P. Dubois, B. Desoize, C. Pechery, J.M. Dubois de Montreynaud, H. Millart, and H. Choisy, Therapeutic index of gallium, orally administered, as chloride, in combination with cisplatinum and etoposide in lung cancer patients, in: “Metal Ions in Biology and Medicine”, J. Anastassopoulou, Ph. Collery, J.C. Etienne, and Th. Theophanides, eds., John Libbey Eurotext, Paris (1992).

    Google Scholar 

  18. Ph. Collery, H. Millart, C. Pechery, F. Kratz, and B.K. Keppler, New gallium complexes for a cisplatin combination therapy, in: “Metal Ions in Biology and Medicine”, J. Anastassopoulou, Ph. Collery, J.C. Etienne, and Th. Theophanides, eds., John Libbey Eurotext, Paris (1992).

    Google Scholar 

  19. B.K. Keppler and D. Schmähl, Preclinical Evaluation of Dichlorobis(l-phenylbutane-1,3-dionato)-titanium(IV) and budotitane, Arzneim.-Forsch./Drug Res. 36 (II), 12, 1822 (1986).

    CAS  Google Scholar 

  20. B.K. Keppler, H. Bischoff, M.R. Berger, M.E. Heim, G. Reznik, and D. Schmähl, Preclinical development and first clinical studies of budotitane, in: “Platinum and other metal coordination compounds in cancer chemotherapy”, M. Nicolini, ed., Martinus Nijhoff Publishing, Boston (1988).

    Google Scholar 

  21. P. Comba, H. Jakob, B. Nuber, and B.K. Keppler, Solution structures and isomer distributions of bis(β-diketonato) complexes of titanium(IV) and cobalt(III). Inorg. Chem. 33:3396 (1994).

    Article  CAS  Google Scholar 

  22. T. Schilling, B.K. Keppler, M.E. Heim, K. Burk, J. Rastetter, and A.-R. Hanauske, Phase I clinical and phannacokinetic trial of the new metal complex budotitane, Onkologie 16:S1, Karger, Basel (1993).

    Google Scholar 

  23. B.M. Sutton and R.G. Franz, eds., “Bioinorganic Chemistry of Gold Coordination Compounds”, Smith Kline & French Laboratories, Philadelphia (1983).

    Google Scholar 

  24. A.J. Lewis and D.T. Walz, Immunopharmacology of gold, Progr. Medicinal Chem. 19, G.P. Ellis and G.B. West, eds., Elsevier Biomédical Press, Lausanne, 1 (1982).

    Google Scholar 

  25. O.M. Ni Dhubhghaill and P.J. Sadler, Gold complexes in cancer chemotherapy, in: “Metal Complexes in Cancer Chemotherapy”, B.K. Keppler, ed., VCH Weinheim (1993).

    Google Scholar 

  26. P.J. Sadler and R.E. Sue, The chemistry of gold drugs, Metal-Based Drugs 1, 2–3, 107 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. M. Gielen, Tin-based antitumour drugs, in: “Metal Ions in Biology and Medicine”, Ph. Collery, ed., John Libbey Eurotext, Montrouge (1994).

    Google Scholar 

  28. M. Gielen, A. El Khloufi, M. Biesemans, A. Bouhdid, D. de Vos, B. Mahieu, and R. Willem, Synthesis, characterization and high in vitro antitumour activity of novel triphenyltin carboxylates, Metal-Based Drugs 1,4, 305(1994).

    Article  CAS  PubMed  Google Scholar 

  29. M. Gielen, Tin-based antitumour drugs, Metal-Based Drugs 1, 2–3, 213 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. M.J. Clarke, Oncological implications of the chemistry of ruthenium, in: “Metal Ions in Biological Systems”, 11: Metal Complexes as Anticancer Agents, H. Sigel, ed., Marcel Dekker, New York (1980).

    Google Scholar 

  31. M.J. Clarke, Ruthenium complexes: Potential roles in anti-cancer Pharmaceuticals, in: “Metal Complexes in Cancer Chemotherapy”, B.K. Keppler, ed., VCH Weinheim (1993).

    Google Scholar 

  32. G. Mestroni, E. Alessio, G. Sava, S. Pacor, and M. Coluccia, The development of tumor-inhibiting ruthenium dimethylsulfoxide complexes, in: “Metal Complexes in Cancer Chemotherapy”, B.K. Keppler, ed., VCH Weinheim (1993).

    Google Scholar 

  33. G. Mestroni, E. Alessio, G. Sava, S. Pacor, M. Coluccia, and A. Boccarelli, Water-soluble ruthenium-(III)-dimethyl sulfoxide complexes: chemical behaviour and pharmaceutical properties, Metal-Based Drugs 1, 1, 43 (1994).

    Article  Google Scholar 

  34. B.K. Keppler, M. Henn, U.M. Juhl, M.R. Berger, R. Niebl, and F.E. Wagner, New ruthenium complexes for the treatment of cancer, Progr. Clin. Biochem. Med. 10:41 (1989).

    Article  CAS  Google Scholar 

  35. B.K. Keppler, K.-G. Lipponer, B. Stenzel, and F. Kratz, New tumor-inhibiting ruthenium complexes, in: “Metal Complexes in Cancer Chemotherapy”, B.K. Keppler, ed., VCH Weinheim (1993).

    Google Scholar 

  36. O.M. Ni Dhubhghaill, W.R. Hagen, B.K. Keppler, K.-G. Lipponer, and P.J. Sadler, Aquation of the anti-cancer complex trans-[RuCl4(Him)2] (Him = imidazole), J. Chem. Soc. Dalton Trans., 3305, (1994).

    Google Scholar 

  37. J. Chatlas, R. van Eldik, and B.K. Keppler, Spontaneous aquation reactions of a promising tumor inhibitor trans-imidazolium-tetrachlorobis(imidazole)ruthenium(III), trans-HIm[RuCl4(Im)2], Inorg. Chim. Acta 233:59 (1995).

    Article  CAS  Google Scholar 

  38. F. Kratz, B.K. Keppler, L. Messori, C. Smith, and E.N. Baker, Protein-binding properties of two antitumour Ru(III) complexes to human apotransferrin and apolactoferrin, Metal-Based Drugs 1, 2–3,169 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. M.R. Berger, M.H. Seelig, and A. Galeano, Metal complexes with specific activity against colorectal tumors: evaluation of a tumor model close to the clinical situation, in: “Metal Complexes in Cancer Chemotherapy”, B.K. Keppler, ed., VCH Weinheim (1993).

    Google Scholar 

  40. M.H. Seelig, M.R. Berger, and B.K. Keppler, Antineoplastic activity of three ruthenium derivatives against chemically induced colorectal carcinoma in rats, J. Cancer Res. Clin. Oncol. 118:195 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keppler, B.K., Vogel, E.A. (1996). Overview of Tumor-Inhibiting Non-Platinum Compounds. In: Pinedo, H.M., Schornagel, J.H. (eds) Platinum and Other Metal Coordination Compounds in Cancer Chemotherapy 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0218-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0218-4_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0220-7

  • Online ISBN: 978-1-4899-0218-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics