Skip to main content

Potential Role of Hyperactivation of Signal Transduction Pathways in Alzheimer’s Disease: Protein Kinase C Regulates PHF-like Phosphorylation of Tau within Neuronal Cells

  • Chapter
Book cover Neurodegenerative Diseases

Abstract

Paired helical filaments (PHF) that accumulate in affected neurons in Alzheimer’s disease are comprised of hyperphosphorylated tau that exhibits electrophoretic and antigenic properties distinct from that of normal adult CNS tau (for reviews, see refs. 1–3). Accordingly, one approach towards understanding the onset and progression of Alzheimer’s disease is to determine the kinase(s) responsible for phosphorylating tau.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goedert, M., Jakes, R., Crowther, R. A., Six, J., Lubke, U., Vandermeeren, M., Cras, P., Trojanowski, J. Q., and Lee, V. M.-Y. (1993) The abnormal phosphorylation of tau proteins at Ser-202 in Alzheimer disease recapitulates phosphorylation during development. Proc. Natl. Acad. Sci. USA 90:5066–5070.

    Article  PubMed  CAS  Google Scholar 

  2. Trojanowski, J. Q., Schmidt, M. L., Shin, R.-W., Bramblett, G. T., Rao, D., and Lee, V. M.-Y. (1993) Altered tau and neurofilament proteins in neurodegenative diseases: diagnostic implications for Alzheimer’s disease and Lewy body dementias. Brain Pathol. 3:45–54.

    Article  PubMed  CAS  Google Scholar 

  3. Trojanowski, J. Q., Schmidt, M. L., Shin, R.-W., Bramblett, G. T., Goedert, M., and Lee, V. M.-Y. (1993) PHF tau (A68): from pathological marker to potential mediator of neuronal dysfunction and degeneration in Alzheimer’s disease. Clin. Neurosci. 1:184–191.

    Google Scholar 

  4. Baudier, J. and Cole, D. R. (1987) Phosphorylation of tau proteins to a state like that in Alzheimer’s brain is catalyzed by a calcium/calmodulin-dependent kinase and modulated by phospholipids. J. Biol. Chem. 262:17577–17583.

    PubMed  CAS  Google Scholar 

  5. Baumann, K., Mandelkow, E.-M., Biernat, J., Piwnica-Worms, H., and Mandelkow, E. (1993) Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett. 336:417–424.

    Article  PubMed  CAS  Google Scholar 

  6. Drewes, G., Lichtenberg-Kragg, B., Doring, F., Mandelkow, E.-M., Bienart, J., Doree, M., and Mandelkow, E. (1992) Mitogen activated protein (MAP) kinase transform tau protein into an Alzheimer-like state. EMBO J. 11:2131–2138.

    PubMed  CAS  Google Scholar 

  7. Goedert, M., Cohen, E. S., Jakes, R., and Cohen, P. (1992) p42 MAP kinase phosphorylation sites in microtubule-associated protein tau are dephosphorylated by protein phosphatase 2A1. FEBS Lett. 312:95–99.

    Article  PubMed  CAS  Google Scholar 

  8. Hanger, D. P., Hughes, K., Woodgett, J. R., Brion, J. P., and Anderton, B. H. (1992) Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localization of the kinase. Neurosci. Lett. 147:58–62.

    Article  PubMed  CAS  Google Scholar 

  9. Kobayahi S, Ishiguro K, Omori A, Takamatsu M, Arioka M, Imahora K, Uchida T (1993) A cdc-related kinase PSSALRE/cdk5 is homologous with the 30kDa subunit of tau protein kinase II, a proline-directed kinase associated with microtubules. FEBS Lett 335: 171–175.

    Article  Google Scholar 

  10. Ledesma, M. D., Correas, L., Avila, J., and Diaz-Nido, J. (1992) Implication of brain cdc2 and MAP kinases in the phosphorylation of tau protein in Alzheimer’s disease, FEBS Lett. 308: 218–224.

    Article  PubMed  CAS  Google Scholar 

  11. Mandelkow, E.-M., Drewes, G., Biernat, J., Gustke, N., Van Lint, J., Vandenheede, J. R., and Mandelkow, E. (1992) Glycogen synthase kinase 3 and the Alzheimer’s disease-like state of microtubule-associated protein tau. FEBS Lett. 314:315–321.

    Article  PubMed  CAS  Google Scholar 

  12. Mulot, S. F. C., Hughes, K., Woodgett, J. R., Anderton, B. H., and Hanger, D. P. (1994) PHF-tau a from Alzheimer’s brain comprises four species on SDS-PAGE which can be mimicked by in vitro phosphorylation of human brain tau by glycogen synthase kinase-3b. FEBS Lett. 349: 359–364.

    Article  PubMed  CAS  Google Scholar 

  13. Paudel, H. K., Lew, J., Zenobia, A., and Wang, J. H. (1993) Brain proline-directed kinase phosphorylates tau on sites that are abnormally phosphorylated in tau associated with Alzheimer’s paired helical filaments. J. Biol. Chem. 268: 23512–23518.

    PubMed  CAS  Google Scholar 

  14. Vulliet, R., Halloran, S. M., Braun, R. K., Smith, A. J., and Lee, G. (1992) Proline-directed phosphorylation of human tau protein. J. Biol. Chem. 267: 22570–22574.

    PubMed  CAS  Google Scholar 

  15. Heikkila JE, Akerlind G and Akerman KEO (1991) Protein kinase C activation and down-regulation in relation to phorbol ester-induced differentiation of SH-SY-5Y human neuroblastoma. J Cell Physiol 140: 593–600.

    Article  Google Scholar 

  16. Leli U, Cataldo AM, Shea TB, Nixon RA and Hauser G (1992a) Distinct mechanisms of differentiation of SH-SY-5Y neuroblastoma cells by protein kinase C activators and inhibitors. J Neurochem 58: 1191–1198.

    Article  PubMed  CAS  Google Scholar 

  17. Leli U, Parker PJ and Shea TB (1992b) Intracellular delivery of protein kinase C-a or-e isoform-specific antibodies promotes acquisition of a morphologically differentiated phenotype in neuroblastoma cells. FEBS Lett 297: 91–94.

    Article  PubMed  CAS  Google Scholar 

  18. Minana M-D, Felipo V and Grisolia S (1989) Inhibition of protein kinase C induces differentiation of neuroblastoma cells. FEBS Lett 255: 184–186.

    Article  PubMed  CAS  Google Scholar 

  19. Ono K, Katayama N, Yamagata Y, Tokunaga A and Tsuda M (1991) Morphology of neurites from N18TG2 cells induced by H-7 and by cAMP. Brain Res Bull 26: 605–612.

    Article  PubMed  CAS  Google Scholar 

  20. Ono K, Tokunaga A and Tsuda M (1993) Neurite outgrowth from N18TG2 neuroblastoma induced by H-7, a protein kinase inhibitor, in the presence of colchicine. Brain Res Bull 31: 209–215.

    Article  PubMed  CAS  Google Scholar 

  21. Shea TB and Beermann ML (1991a) Stauroporine-induced morphological differentiation of human neuroblastoma cells. Cell Biol Internat Rep 15: 161–168.

    Article  CAS  Google Scholar 

  22. Shea TB, Beermann ML, Leli U and Nixon RA (1992a) Opposing influences of protein kinase activities on neurite outgrowth in human neuroblastoma cells: Initiation by kinase A and restriction by kinase C. J Neurosci Res 33: 398–407.

    Article  PubMed  CAS  Google Scholar 

  23. Tsuda M, Ono K, Katayama N, Yamagata Y, Kikuchi K and Tsuchiya T (1989) Neurite outgrowth from mouse neuroblastoma and cerebellar cells induced by the protein kinase inhibitor H-7. Neurosci Lett 105: 241–245.

    Article  PubMed  CAS  Google Scholar 

  24. Murray, A. W., Fournier, A., and Hardy, S. J. (1987) Proteolytic activation of protein kinase C: a physiological reaction? Trends Neurol. Sci. 12:53–54.

    CAS  Google Scholar 

  25. Hashimoto K, Mikawa K, Kuroda T, Ase K and Kishimoto A (1990) Calpains and regulation of protein kinase C. In: Intracellular calcium-dependent proteolysis (Mellgren RL, Murachi T, eds.) CRC Press Boca Raton, FA pp 181–190.

    Google Scholar 

  26. Inoue M, Kishimoto A, Takai Y and Nishizuka Y (1977) Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. II. Proenzyme and its activation by calcium-dependent protease from rat brain. J Biol Chem 252: 7610–7616.

    PubMed  CAS  Google Scholar 

  27. Kishimoto A, Kajikawa N, Shiota M and Nishizuka Y (1983) Proteolytic activation of calcium-activated, phospholipid-dependent protein kinase by calcium-dependent neutral protease. J Biol Chem. 258: 1156–1160.

    PubMed  CAS  Google Scholar 

  28. Kishimoto A, Mikawa K, Hashimoto K, Yasuda I, Tanaka S-I, Tominaga M, Kurode T and Nishizuka Y (1989) Limited proteolysis of protein kinase C subspecies by calcium-dependent neurtral protease (Calpain) J Biol Chem 264: 4088–4092.

    PubMed  CAS  Google Scholar 

  29. Pontremoli, S., Michetti, M., Melloni, E., Sparatore, B., Salamino, F. and Horecker B. L. (1990) Identification of the proteolytically activated form of protein kinase C in stimulated human neurtrophils. Proc. Natl. Acad. Sci. USA 87: 3705–3707.

    Article  PubMed  CAS  Google Scholar 

  30. Young, S., Parker, P. J., Ulrich, A. and Stable, S. (1987) Down-regulation of protein kinase C is due to an increased rate of degradation. Biochem. J. 244: 775.

    PubMed  CAS  Google Scholar 

  31. Al, Z. and Cohen, C. M. (1993) Phorbol 12-myristate 13-acetate-stimulated phosphorylation of erythrocyte membrane skeletal proteins is blocked by calpain inhibitors: possible role of protein kinase M. Biochem J. 296: 675–683.

    PubMed  CAS  Google Scholar 

  32. Shea, T. B., Beermann, M. L., Griffin, W. R., Anthony, P. K., and Leli, U. (1994a) Calpain degrades the free PKC catalytic subunit (PKM) faster than intact PKC. Trans. Am. Soc. Neurochem. 25: 262.

    Google Scholar 

  33. Shea, T. B., Beermann, M. L., Griffin, W. R., and Leli, U. (1994b) Degradation of protein kinase Cα and its free catalytic subunit, protein kinase M, in intact human neuroblastoma cells and under cell-free conditions: Evidence that PKM is degraded by calpain-mediated proteolysis at a faster rate than PKC. FEBS Lett. 350:223.

    Article  PubMed  CAS  Google Scholar 

  34. Shea, T. B., Cressman, C. M., Beermann, M. L., and Nixon, R. A. (1994c) Hyperphosphorylation of tau following calcium influx into human neuroblastoma: Role of calpain and PKC. Mol. Biol. Cell: 5: 168a.

    Google Scholar 

  35. Nixon, R. A. (1989) Calcium-activated neutral proteinases as regulators of cellular function. Implications for Alzheimer’s disease Pathogenesis. Ann. N. Y. Acad. Sci. 568: 198–208.

    Article  PubMed  CAS  Google Scholar 

  36. Hoshi, M., Nishida, E., Miyata, Y., Sakai, H., Miyoshi, T, Ogawara, H. and Akiyama, T. (1987) Protein kinase C phosphorylates tau and induces its functional alterations. FEBS Lett. 217: 237–241.

    Article  PubMed  CAS  Google Scholar 

  37. Steiner, B., Mandelkow, E.-M., Biernat, J., Gustke, N., Meyer, H. E., Schmidt, B., Mieskes, G., Söling, H. D., Dreschsei, D., Kirschner, M. W., Goedert, M., and Mandelkow, E. (1990) Phosphorylation of microtubule-associated protein tau: identification of the site for Ca2+-calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tangles. EMBO J. 9:3539–3544.

    PubMed  CAS  Google Scholar 

  38. Shea TB. (1990) Neuritogenesis in mouse NB2a/d1 neuroblastoma cells: Triggering by calcium influx and involvement of actin and tubulin dynamics. Cell Biol Internat Reports 14:967–79.

    Article  CAS  Google Scholar 

  39. Shea TB, Cressman CM, Spencer MJ, Beermann ML and Nixon RA (1995) Enhancement of neurite outgrowth following calpain inhibition is mediated by protein kinase C. J Neurochem 65: 967 in press.

    Google Scholar 

  40. Spencer MJ and Tidball JG (1992) Calpain concentration is elevated although net calcium-dependent proteolysis is suppressed in dystrophin-deficient muscle. Exp Cell Res 203: 107–114.

    Article  PubMed  CAS  Google Scholar 

  41. Uemori T, Shimojo T, Asada K, Asano T, Kimizuka F, Kato I, Maki M, Hatanaka M, Murachi T, Hanzawa H (1990) Characterization of a functional domain of human calpastatin. Biochem Biophys Res Comm 166: 1485–1493.

    Article  PubMed  CAS  Google Scholar 

  42. Shea TB and Beermann ML (1991b) A method for phospholipid-mediated delivery of specific antibodies into adherent cultured cells. Biotechniques 10: 288–291.

    PubMed  CAS  Google Scholar 

  43. Parker P, Coussens L, Totty N, Rhee L, Young S, Chen E, Stabel S, Waterfield M, Ullrich A (1986): The Complete Primary Structure of Protein Kinase C-the Major Phorbol Ester Receptor. Science 233:853–859.

    Article  PubMed  CAS  Google Scholar 

  44. Vitto A. and Nixon R.A. (1986). Calcium-activated neurtral proteases of human brain: subunit structure and enzymatic properties of multiple molecular forms. J. Neurochem. 47, 1039–1051.

    Article  PubMed  CAS  Google Scholar 

  45. Kosik KS, Orecchio LD, Binder L, Trojanowski JQ, Lee VM-Y, and Lee G (1988) Epitopes that span the tau molecule are shared with paired helical filaments. Neuron 1: 817–825.

    Article  PubMed  CAS  Google Scholar 

  46. Samis J.A., Zboril G. and Elce J.S. (1987). Calpain I remains intact and intracellular during platelet activation. Biochem. J. 246, 481–488.

    PubMed  CAS  Google Scholar 

  47. Shea TB, Beermann ML and Nixon RA (1991) Multiple proteases regulate neurite outgrowth in NB2a/d1 neuroblastoma. J Neurochem 56:842–851.

    Article  PubMed  CAS  Google Scholar 

  48. Matsuo, E. S., Shin, R.-W., Billingsley, M. L., Van deVoorde, A., O’Connor, M., Trojanowski, J. Q. and Lee, V. M.-Y. (1994) Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau. Neuron 13: 989–1002.

    Article  PubMed  CAS  Google Scholar 

  49. Pope, W. B., Enam, S. A., Bawa, N., Miller, B. E., Ghanbari, H. A., and Klein, W. L. (1993) Phosphorylated tau epitope of Alzheimer’s disease is coupled to axon development in the avian central nervous system. Exp. Neurol. 120: 106–113.

    Article  PubMed  CAS  Google Scholar 

  50. Pope, W. B., Lambert, M. P., Leypold, B., Seupaul, R., Sletten, L., Krafft, G., and Klein, W. L. (1994) Microtubule-associated protein tau is hyperphosphorylated during mitosis in the human neuroblastoma cell line SH-SY-5Y. Exp. Neurol. 126: 185–194.

    Article  PubMed  CAS  Google Scholar 

  51. Nishizuka, Y. (1989) Studies and prospectives of the protein kinase C family for cellular regulation. Cancer 63: 1892–1903.

    Article  PubMed  CAS  Google Scholar 

  52. Leli, U., Shea, T. B., Cataldo, A., Hauser, G., Grynspan, F., Beermann, M. L., Liepkalns, V. A., Nixon, R. A, and Parker, P. A. (1993) Differential expression and subcellular localization of protein kinase C α,β,δ,ε and γ isoforms in SH-SY-5Y neuroblastoma cells: Modifications during differentiation. J. Neurochem. 60:289–298.

    Article  PubMed  CAS  Google Scholar 

  53. Shea TB, Beermann ML, Nixon RA. (1992b) Microtubule-associated protein tau is required for axonal neurite elaboration by neuroblastoma cells. J Neurosci Res. 32:363–374.

    Article  PubMed  CAS  Google Scholar 

  54. Lee, J. H., Goedert, M., Hill, W. D., Lee. V. M.-Y., and Trojanowski, J. Q. (1993) Tau proteins are abnormally expressed in olfactory epithelium of Alzheimer’s disease and developmentally regulated in fetal spinal cord. Exp. Neurol. 121: 93–105.

    Article  PubMed  CAS  Google Scholar 

  55. Mattson MP (1991) Evidence for the involvement of protein kinase C in neurodegenerative changes in cultured human cortical neurons. Exp Neurol 112:95–103.

    Article  PubMed  CAS  Google Scholar 

  56. Nixon RA, Saito K-I, Grynspan F, Griffin WR, Katayama S, Honda T, Mohan PS, Shea TB, Beermann ML. (1994) The calcium-activated neurotral proteinase (calpain) system in aging and Alzheimer’s disease. Ann NY Acad Sci 747:77–91.

    Article  PubMed  CAS  Google Scholar 

  57. Johnson GVW, Jope RS and Binder LI (1989) Proteolysis of tau by calpain. Biochem Biophys Res Commun 163: 1505–1511.

    Article  PubMed  CAS  Google Scholar 

  58. Johnson GVW and Foley VG (1993) Calpain-mediated proteolysis of microtubule-associated protein 2 (MAP2) is inhibited by phosphorylation by cAMP-dependent protein kinase, but not by Ca2+/calmodulin-dependent protein kinase EL J Neurosci Res 34: 642–647.

    Article  PubMed  CAS  Google Scholar 

  59. Litersky JM, Scott CW and Johnson GVW (1993) Phosphorylation, calpain proteolysis and tubulin binding of recombinant human tau isoforms. Brain Res 604: 32–40.

    Article  PubMed  CAS  Google Scholar 

  60. Lang, D., Hauser, G. H., Cressman, C. M, Mohan, P. S., Nixon, R. A., and Shea, T. B. (1995) Lipids inhibit mM calpain-mediated proteolysis of PKC in vitro. J. Neurochem., 64, 25a.

    Google Scholar 

  61. Singh TJ, Zaidi T, Grundke-Iqbal I and Iqbal K(1995) Modulation of GSK-3-catalyzed phosphorylation of microtubule-associated protein tau by non-proline-dependent protein kinases. FEBS Lett 358:4–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shea, T.B., Boyce, J.J., Cressman, C.M. (1996). Potential Role of Hyperactivation of Signal Transduction Pathways in Alzheimer’s Disease: Protein Kinase C Regulates PHF-like Phosphorylation of Tau within Neuronal Cells. In: Fiskum, G. (eds) Neurodegenerative Diseases. GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0209-2_54

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0209-2_54

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0211-5

  • Online ISBN: 978-1-4899-0209-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics