Skip to main content

Mutations of Human Cu, Zn Superoxide Dismutase Expressed in Transgenic Mice Cause Motor Neuron Disease

  • Chapter
Neurodegenerative Diseases

Abstract

ALS causes the degeneration of motor neurons in cortex, brainstem and spinal cord with consequent paralysis and death.1 Most cases of ALS are sporadic and have an unknown etiology.2 However, about 10–15% of all ALS cases are inherited. An adultonset, autosomal dominantly inherited trait is the predominant form3, although there is a rare, recessively inherited childhood-onset form of ALS in which survival can be quite long4. In 1991, a fraction of families with the familial form of ALS (FALS) showed linkage to a disease locus on human chromosome 21q.5 Shortly thereafter, in 1993, the target of mutation on chromosome 21q was shown to be the gene (SOD1) encoding Cu,Zn Superoxide dismutase (Cu,Zn SOD). At least 22 different missense mutations causing the substitution of one amino acid for another have now been found in FALS kindreds. Cu,Zn SOD is a metalloenzyme that catalyzes the dismutation of Superoxide (O2×-) to hydrogen peroxide (H2O2). The copper ion provides the redox center for the dismutation of Superoxide, while the zinc ion plays a structural role. Three different genes encoding Superoxide dismutases are present in the human genome. All three enzymes contain a transition metal in their active site, but differ in their subcellular localization. Only Cu,Zn SOD is mutated in FALS. Cu,Zn SOD is primarily cytosolic and is expressed in every cell within the body.6,7 Why only motor neurons are affected by the mutations found in FALS is unknown. The mutations of Cu,Zn SOD found in affected families are primarily amino acid substitutions in structural regions of the polypeptide.8 No deletions of the human SOD1 gene have been described which suggests that expression of the mutant polypeptide is required for pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mulder, D.W. (1982) Clinical limits of amyotrophic lateral sclerosis. In: Rowland, L.P., (Ed.) Human Motor Neuron Diseases, pp. 15-22. New York: Raven Press.

    Google Scholar 

  2. Tandan, R. and Bradley, W.G. (1985) Amyotrophic lateral sclerosis: Part 1. Clinical features, pathology and ethical issues in management. Ann. Neurol. 18, 271–280.

    Article  PubMed  CAS  Google Scholar 

  3. Mulder, D.W., Kurland, L.T., Offord, K.P., and Beard, CM. (1986) Familial adult motor neuron disease: Amyotrophic lateral sclerosis. Neurol. 36, 511–517.

    Article  CAS  Google Scholar 

  4. Ben Hamida, M., Hentati, F., and Ben Hamida, C. (1990) Hereditary motor system diseases (chronic juvenile amyorophic lateral sclerosis): conditions combining a bilateral pyramidal syndrome with limb and bulbar atrophy. Brain 113, 347–363.

    Article  PubMed  Google Scholar 

  5. Siddique, T et al. (1994) Linkage of a gene causing familial amyotropic lateral sclerosis to chromosome 21 and evidence of locus heterogeneity. New Englnd. J. Med. 324, 1381–1384.

    Article  Google Scholar 

  6. Crapo, J.D., Oury, T., Rabouille, C., Slot, J.W., and Chang, L-Y. (1992) Copper, zinc Superoxide dismutase is primarily a cytosolic protein in human cells. Proc. Natl. Acad. Sci. USA 89, 10405–10409.

    Google Scholar 

  7. Beckman, J.S., Carson, M., Smith, C.D. and Koppenol, W.H. (1993) ALS, SOD and peroxynitrite. Nature 364, 584.

    Article  PubMed  CAS  Google Scholar 

  8. Deng, H.X. et al. (1993) Amyotrophic lateral sclerosis and structural defects in Cu,Zn Superoxide dismutase. Science 261, 1047–1051.

    Article  PubMed  CAS  Google Scholar 

  9. Gurney, M.E., Pu, H., Chiu, A.Y., Dal Canto, M.C., Polchow, C.Y., Alexander, D.D., Caliendo, J., Hentati, A., Kwon, Y.W., Deng, H.-X., et al. (1994) Motor neuron degeneration in mice expressing a human Cu, Zn Superoxide dismutase mutation. Science 264, 1772–1775.

    Article  PubMed  CAS  Google Scholar 

  10. Ripps, M.E., Huntley, G.W., Hof, P.R., Morrison, J.H., and Gordon, J.W. (1995) Transgenic mice expressing an altered murine Superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 92, 689–693.

    Article  PubMed  CAS  Google Scholar 

  11. Price, D. et al., see chapter from this symposium.

    Google Scholar 

  12. Avraham, K.B., Sugarman, H., Rotshenker, S. and Groner, Y. (1991) Down’s syndrome: morphological remodelling and increased complexity in the neuromuscular junction of transgenic CuZn-superoxide dismutase mice. J. Neurocytol. 20, 208–215.

    Article  PubMed  CAS  Google Scholar 

  13. Avraham, K.B., Schickler, M., Sapoznikov, D., Yarom, R. and Groner, Y. (1988) Down’s syndrome: Abnormal neuromuscular junction in tongue of transgenic mice with elevated levels of human Cu,Zn-superoxide dismutase. Cell 54, 823–829.

    Article  PubMed  CAS  Google Scholar 

  14. Dal Canto, M.C. and Gurney, M.E. (1994) The development of CNS pathology in a murine transgenic model of human ALS. Am. J. Pathol. 145, 1271–1280.

    Google Scholar 

  15. Przedborski, S., Kostic, V., Jackson-Lewis, V., Naini, A.B., Simonetti, S., Fahn, S., Carlson, E., Epstein, C.J., and Cadet, J.L. (1992) Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to Nmethyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J. Neurosci. 12, 1658–1667.

    PubMed  CAS  Google Scholar 

  16. Yang, G., Chan, P.H., Chen, J., Carlson, E., Chen, S.F., Weinstein, P., Epstein, C.J. and Kamii, H. (1994) Human copper-zinc Superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25, 165–70.

    Article  PubMed  Google Scholar 

  17. Epstein, C.J., Avraham, K.B., Lovett, M., Smith, S., Elroy-Stein, O., Rotman, G., Bry, C and Groner, Y. (1987) Transgenic mice with increased Cu/Zn-superoxide dismutase activity: Animal model of dosage effects in Down syndrome. Proc. Natl. Acad. Sci. USA 84, 8044–8048.

    Article  PubMed  CAS  Google Scholar 

  18. Borchelt, D.R. et al. (1994) Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc. Natl. Acad. Sci. USA 91, 8292–8296.

    Article  PubMed  CAS  Google Scholar 

  19. Benz, R. (1990) Biphysical properties of porin pores from mitochondrial outer membrane of eukaryotic cells. Experientia 46, 131–137.

    Article  PubMed  CAS  Google Scholar 

  20. Weisiger, R.A. and Fridovich, I. (1973) Mitochondrial Superoxide dismutase. Site of synthesis and intramitochondrial localization. J. Biol. Chem. 248, 4793–4796.

    PubMed  CAS  Google Scholar 

  21. Liou, W., Chang, L.Y. Geuze, HJ. Strous, G.J. Crapo, J.D. and Slot, J.W. (1993) Distribution of CuZn Superoxide dismutase in rat liver. Free Radical Biol. Med. 14, 201–207.

    Article  CAS  Google Scholar 

  22. Yim, M.B., Chock, P.B. and Stadtman, E.R. (1993) Enzyme function of copper, zinc Superoxide dismutase as a free radical generator. J. Biol. Chem. 268, 4099–4105.

    PubMed  CAS  Google Scholar 

  23. Beekman, J.S., Carson, M., Smith, C.D. and Koppenol, W.H. (1993) ALS, SOD and peroxynitrite. Nature 364, 584.

    Article  Google Scholar 

  24. Ribarov, S.R. and Bochev, P.G. (1984) The interaction of copper chloride with the erythrocyte membrane as a source of activated oxygen species. Gen. Physiol. Biophys. 3, 431–435.

    PubMed  CAS  Google Scholar 

  25. Ogasawara, M. et al. (1993) Mild ALS in Japan associated with novel SOD mutation. Nature Genetics 5, 323–324.

    Article  PubMed  Google Scholar 

  26. Caffi, M.T., Battistoni, A., Polizio, F., Desideri, A., and Rotilio, G. (1994) Impaired copper binding by the H46R mutant of human Cu,Zn Superoxide dismutase, invovled in amyotrophic lateral sclerosis. FEBS Letters 356, 314–316.

    Article  Google Scholar 

  27. Selkoe, D. J. (1994) Alzheimer’s disease: a central role for amyloid J. Neuropathol. Exp. Neurol. 53, 427–428.

    Article  Google Scholar 

  28. Tu, P.-H., Raju, P., Robinson, K.A., Gurney, M.E., Trojanowski, J.Q., and Lee, V. M.-Y. (1995) Transgenic mice carrying a human mutant Superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA. in press..

    Google Scholar 

  29. Collard, J.-F., Cote, F. and Julien, J.-P. (1995) Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature 375, 61–64.

    Article  PubMed  CAS  Google Scholar 

  30. Shaw, P.J. (1994) Excitotoxicity and motor neurone disease. J. Neurol. Sci. 124(Suppl.), 6–13.

    Article  PubMed  Google Scholar 

  31. Choi, D.W. (1988) Glutamate neurotoxicity and disease of the nervous system. Neuron 1, 623–634.

    Article  PubMed  CAS  Google Scholar 

  32. Ince, P.G. et al. (1992) Parvalbumin and calbindin D-28K in the human motor system and in motor neuron disease. Neuropathol. Appl. Neurobiol..

    Google Scholar 

  33. Bensimon G. Lacomblez L. Meininger V. (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. New Englnd. J. Med. 330, 585–591.

    Article  CAS  Google Scholar 

  34. Plaitakis, A. Mandeli, J., Fesdjian, C. and Sivak, M.A. (1991) Dysregulation of glutamate metabolism in ALS: correlation with gender and disease type. Neurol. 41, 392–393.

    Google Scholar 

  35. Rothstein, J.D. et al. (1990) Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann. Neurol. 28, 18–25.

    Article  PubMed  CAS  Google Scholar 

  36. Rothstein, J.D., Martin, L.J., and Kuncl, R.W. (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. New Englnd. J. Med. 326, 1464–1468.

    Article  CAS  Google Scholar 

  37. Fix, A.S. et al. (1993) Neuronal vacuolization and necrosis induced by the noncompetitive N-metyl-D-aspartate (NMDA) antagonist MK(+)801 (dizocilpine maleate): A light and electron microscopic evaluation of rat retrosplenial cortex. Exp. Neurol. 123, 204–215.

    Article  PubMed  CAS  Google Scholar 

  38. Bowling, A.C., Schulz, J.B., Brown, R.H. Jr, and Beal, F.M. (1993) Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J. Neurochem. 61, 2322–2325.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gurney, M.E., Chiu, A.Y., Canto, M.C.D., Trojanowski, J.Q., Lee, V.MY. (1996). Mutations of Human Cu, Zn Superoxide Dismutase Expressed in Transgenic Mice Cause Motor Neuron Disease. In: Fiskum, G. (eds) Neurodegenerative Diseases. GWUMC Department of Biochemistry and Molecular Biology Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0209-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0209-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0211-5

  • Online ISBN: 978-1-4899-0209-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics