Skip to main content

Modulation of Wound Repair by Members of the Fibroblast Growth Factor Family

  • Chapter
The Molecular and Cellular Biology of Wound Repair

Abstract

The fibroblast growth factors (FGFs) comprise a family of at least nine structurally homologous polypeptides that are found in a variety of cells and tissues (Baird and Böhlen, 1990; Brem and Klagsbrun, 1993; Burgess and Maciag, 1989; Folkman and Klagsbrun, 1987; Klagsbrun, 1989; Klagsbrun and D’Amore, 1991; Klagsbrun and Folkman, 1990; Rifkin and Moscatelli, 1989; Tanaka et al., 1992; Miyamoto et al., 1993). This family includes acidic FGF (aFGF), basic FGF (bFGF), int-2 protein, HST/K-FGF, FGF-5, FGF-6, keratinocyte growth factor (KGF), androgen-induced growth factor (AIGF), and glia-activating factor (GAF) (see Table I). These growth factors have been enumerated as FGF-1 through FGF-9, respectively, in order to simplify the nomenclature (Baird and Klagsbrun, 1991). However, since the name KGF is still widely used, the designation “KGF/FGF-7” will be used here in referring to this factor. The aFGF (FGF-1) and bFGF (FGF-2) proteins are the most extensively characterized FGF family members in terms of detailed knowledge concerning structure and biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, J. A., Mergia, A., Whang, J. L., Tumolo, A., Friedman, J., Hjerrild, K. A., Gospodarowicz, D., and Fiddes, J. C., 1986, Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor, Science 233:545–548.

    Article  PubMed  CAS  Google Scholar 

  • Ahn, S. T., and Mustoe, T. A., 1990, Effects of ischemia on ulcer wound healing: A new model in the rabbit ear, Ann. Plast. Surg. 24:17–23.

    Article  PubMed  CAS  Google Scholar 

  • Albertson, S., Hummel, R. P., Breeden, M., and Greenhalgh, D. G., 1993, PDGF and FGF reverse the healing impairment in protein-malnourished diabetic mice, Surgery 114:368–373.

    PubMed  CAS  Google Scholar 

  • Avivi, A., Zimmer, Y., Yayon, A., Yarden, Y., and Givol, D., 1991, Flg-2, a new member of the family of fibroblast growth factor receptors, Oncogene 6:1089–1092.

    PubMed  CAS  Google Scholar 

  • Avivi, A., Yayon, A., and Givol, D., 1993, A novel form of FGF receptor-3 using an alternative exon in the immunoglobulin domain III, FEBS Lett. 330:249–252.

    Article  PubMed  CAS  Google Scholar 

  • Baird, A., and Böhlen, P., 1990, Fibroblast growth factors, in: Handbook of Experimental Pharmacology, Volume 95: Peptide Growth Factors and Their Receptors I (M. B. Sporn and A. B. Roberts, eds.), pp. 369–418, Springer-Verlag, Berlin.

    Google Scholar 

  • Baird, A., and Klagsbrun, M., 1991, Nomenclature meeting report and recommendations, Ann. NY Acad. Sci. 638:xiii–xvi.

    Article  Google Scholar 

  • Baird, A., and Ling, N., 1987, Fibroblast growth factors are present in the extracellular matrix produced by endothelial cells in vitro: Implication for a role of heparinase-like enzymes in the neovascular response, Biochem. Biophys. Res. Commun. 142:428–435.

    Article  PubMed  CAS  Google Scholar 

  • Baird, A., Mormede, P., and Böhlen, P., 1985, Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggests its identity with macrophage-derived growth factor, Biochem. Biophys. Res. Commun. 126:358–364.

    Article  PubMed  CAS  Google Scholar 

  • Bashkin, P., Doctrow, S., Klagsbrun, M., Svahn, C. M., Folkman, J., and Vlodavsky, I., 1989, Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules, Biochemistry 28:1737–1743.

    Article  PubMed  CAS  Google Scholar 

  • Basilico, C., Newman, K. M., Curatola, A. M., Talarico, D., Mansukhani, A., Velchich, A., and Delli-Bovi, P., 1989, Expression and activation of the K-fgf oncogene, Ann. NY Acad. Sci. 567:95–103.

    Article  PubMed  CAS  Google Scholar 

  • Bates, B., Hardin, J., Zhan, X., Drickamer, K., and Goldfarb, M., 1991, Biosynthesis of human fibroblast growth factor-5, Mol. Cell. Biol. 11:1840–1845.

    PubMed  CAS  Google Scholar 

  • Bellosta, P., Talarico, D., Rogers, D., and Basilico, C., 1993, Cleavage of K-FGF produces a truncated molecule with increased biological activity and receptor binding affinity, J. Cell Biol. 121:705–713.

    Article  PubMed  CAS  Google Scholar 

  • Bernfield, M., Kokenyesi, R., Kato, M., Hinkes, M. T., Spring, J., Gallo, R. L., and Lose, E. J., 1994, Biology of the syndecans, Annu. Rev. Cell Biol. 8:1–39.

    Google Scholar 

  • Blotnick, S., Peoples, G. E., Freeman, M. R., Eberlein, T. J., and Klagsbrun, M., 1994, T lymphocytes synthesize and export heparin-binding epidermal growth factor-like growth factor and basic fibroblast growth factor, mitogens for vascular cells and fibroblasts: Differential production and release by CD4+ and CD8+ T cells, Proc. Natl. Acad. Sci. USA 91:2890–2894.

    Article  PubMed  CAS  Google Scholar 

  • Bottaro, D. P., Rubin, J. S., Ron, D., Finch, P. W., Florio, C., and Aaronson, S. A., 1990, Characterization of the receptor for keratinocyte growth factor: Evidence for multiple fibroblast growth factor receptors, J. Biol. Chem. 265:12767–12770.

    PubMed  CAS  Google Scholar 

  • Brem, H., and Klagsbrun, M., 1993, The role of fibroblast growth factors and related oncogenes in tumor growth, in: Oncogenes and Tumor Suppressor Genes in Human Malignancies (C. C. Benz and E. T. Liu, eds.), pp. 211–231, Kluwer Academic Publishers, Norwell, Massachusetts.

    Chapter  Google Scholar 

  • Broadley, K. N., Aquino, A. M., Hicks, B., Ditesheim, J. A., McGee, G. S., Demetriou, A. A., Woodward, S. C., and Davidson, J. M., 1988, Growth factors bFGF and TGFβ accelerate the rate of wound repair in normal and in diabetic rats, Int. J. Tissue React. X:345–353.

    Google Scholar 

  • Broadley, K. N., Aquino, A. M., Woodward, S. C., Buckley-Sturrock, A., Sato, Y., Rifkin, D. B., and Davidson, J. M., 1989a, Monospecific antibodies implicate basic fibroblast growth factor in normal wound repair, Lab. Invest. 61:571–575.

    PubMed  CAS  Google Scholar 

  • Broadley, K. N., Aquino, A. M., Hicks, B., Ditesheim, J. A., McGee, G. S., Demetriou, A. A., Woodward, S. C., and Davidson, J. M., 1989b, The diabetic rat as an impaired wound healing model: Stimulatory effects of transforming growth factor-beta and basic fibroblast growth factor, Biotechnol. Ther. 1:55–68.

    PubMed  Google Scholar 

  • Briistle, O., Aguzzi, A., Talarico, D., Basilico, C., and Kleihues, P., 1992, Angiogenic activity of the K-fgf/hst oncogene in neural transplants, Oncogene 7:1177–1183.

    Google Scholar 

  • Buckley-Sturrock, A., Woodward, S. C., Senior, R. M., Griffin, G. L., Klagsbrun, M., and Davidson, J. M., 1989, Differential stimulation of collagenase and chemotactic activity in fibroblasts derived from rat wound repair tissue and human skin by growth factors, J. Cell. Physiol. 138:70–78.

    Article  PubMed  CAS  Google Scholar 

  • Buntrock, P., Jentzsch, K. D., and Heder, G., 1982a, Stimulation of wound healing, using brain extract with fibroblast growth factor (FGF) activity. I. Quantitative and biochemical studies into formation of granulation tissue, Exp. Pathol. 21:46–53.

    Article  PubMed  CAS  Google Scholar 

  • Buntrock, P., Jentzsch, K. D., and Heder, G., 1982b, Stimulation of wound healing, using brain extract with fibroblast growth factor (FGF) activity. II. Histological and morphometric examination of cells and capillaries, Exp. Pathol. 21:62–67.

    Article  PubMed  CAS  Google Scholar 

  • Buntrock, P., Buntrock, M., Marx, I., Kranz, D., Jentzsch, K. D., and Heder, G., 1984, Stimulation of wound healing, using brain extract with fibroblast growth factor (FGF) activity. III. Electron microscopy, autoradiography, and ultrastructural autoradiography of granulation tissue, Exp. Pathol. 26:247–254.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, W., and Maciag, T., 1989, The heparin-binding (fibroblast) growth factor family of proteins, Annu. Rev. Biochem. 58:575–606.

    Article  PubMed  CAS  Google Scholar 

  • Burrus, L. W., Zuber, M. E., Lueddecke, B. A., and Olwin, B. B., 1992, Identification of a cysteine-rich receptor for fibroblast growth factors, Mol. Cell. Biol. 12:5600–5609.

    PubMed  CAS  Google Scholar 

  • Chedid, M., Rubin, J. S., Csaky, K. G., and Aaronson, S. A., 1994, Regulation of keratinocyte growth factor gene expression by interleukin 1, J. Biol. Chem. 269:10753–10757.

    PubMed  CAS  Google Scholar 

  • Chen, W. Y. J., Rogers, A. A., and Lydon, M. J., 1992, Characterization of biologic properties of wound fluid collected during early stages of wound healing, J. Invest. Dermatol. 99:559–564.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, D. M., Yu, E. Z., Hennessey, P., Ko, F., and Robson, M. C., 1994, Determination of endogenous cytokines in chronic wounds, Ann. Surg. 219:688–692.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, M. L., Hansbrough, J. F., Foreman, T. J., Sakabu, S. A., and Laxer, J. A., 1991, The effects of epidermal growth factor and basic fibroblast growth factor on epithelialization of meshed skin graft interstices, in: Clinical and Experimental Approaches to Dermal and Epidermal Repair: Normal and Chronic Wounds (A. Barbul, M. Caldwell, W. Eaglstein, T. Hunt, D. Marshall, E. Pines, and G. Skover, eds.), pp. 429–442, Alan R. Liss, New York.

    Google Scholar 

  • Coulier, F., Batoz, M., Maries, I., deLapeyriere, O., and Birnbaum, D., 1991, Putative structure of the FGF6 protein and role of the signal peptide, Oncogene 6:1437–1444.

    PubMed  CAS  Google Scholar 

  • Coulier, F., Pizette, S., Ollendorff, V., deLapeyriere, O., and Birnbaum, D., 1994, The human and mouse fibroblast growth factor 6 (FGF6) genes and their products: Possible implication in muscle development, Prog. Growth Factor Res. 5:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, J. M., and Broadley, K. N., 1991, Manipulation of the wound-healing process with basic fibroblast growth factor, Ann. NY Acad. Sci. 638:306–315.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, J. M., Klagsbrun, M., Hill, K. E., Buckley, A., Sullivan, R., Brewer, P. S., and Woodward, S. C., 1985, Accelerated wound repair, cell proliferation, and collagen accumulation are produced by a cartilage-derived growth factor, J. Cell Biol. 100:1219–1227.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, J., Buckley, A., Woodward, S., Nichols, W., McGee, G., and Demetriou, A., 1988, Mechanisms of accelerated wound repair using epidermal growth factor and basic fibroblast growth factor, in: Growth Factors and Other Aspects of Wound Healing: Biological and Clinical Implications (A. Barbul, E. Pines, M. Caldwell, and T. K. Hunt, eds.), pp. 63–75, Alan R. Liss, New York.

    Google Scholar 

  • de Lapeyriere, O., Rosnet, O., Benharroch, D., Raybaud, F., Marchetto, S., Planche, J., Galland, F., Mattei, M.-G., Copeland, N. G., Jenkins, N. A., Coulier, F., and Birnbaum, D., 1990, Structure, chromosome mapping and expression of the murine FGF-6 gene, Oncogene 5:823–831.

    PubMed  Google Scholar 

  • Delli-Bovi, P., Curatola, A. M., Kern, F. G., Greco, A., Ittman, M., and Basilico, C., 1987, An oncogene isolated by transfection of Kaposi’s sarcoma DNA encodes a growth factor that is a member of the FGF family, Cell 50:729–737.

    Article  PubMed  CAS  Google Scholar 

  • Delli-Bovi, P., Curatola, A. M., Newman, K. M., Sato, Y., Moscatelli, D., Hewick, R. M., Rifkin, D. B., and Basilico, C., 1988, Processing, secretion, and biological properties of a novel growth factor of the fibroblast growth family with oncogenic potential, Mol. Cell. Biol. 8:2933–2941.

    PubMed  CAS  Google Scholar 

  • Delli-Bovi, P., Mansukhani, A., Ziff, E. B., and Basilico, C., 1989, Expression of the K-fgf protooncogene is repressed during differentiation of F9 cells, Oncogene Res. 5:31–37.

    PubMed  Google Scholar 

  • Dickson, C., and Peters, G., 1987, Potential oncogene product related to growth factors, Nature 326:833.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, G., Acland, P., Smith, R., Dixon, M., Deed, R., MacAllan, D., Walther, W., Fuller-Pace, F., Kiefer, P., and Peters, G., 1990, Characterization of int-2: A member of the fibroblast growth factor family, J. Cell Sci. (Suppl.) 13:87–96.

    Article  CAS  Google Scholar 

  • Dionne, C. A., Crumley, G., Bellot, F., Kaplow, J. M., Searfoss, G., Ruta, M., Burgess, W. H., Jaye, M., and Schlessinger, J., 1990, Cloning and expression of two distinct high-affinity receptors cross-reacting with acidic and basic fibroblast growth factors, EMBO J. 9:2685–2692.

    PubMed  CAS  Google Scholar 

  • Dixon, M., Deed, R., Acland, P., Moore, R., Whyte, A., Peters, G., and Dickson, G., 1989, Detection and characterization of the fibroblast growth factor-related oncoprotein INT-2, Mol. Cell. Biol. 9:4896–4902.

    PubMed  CAS  Google Scholar 

  • Elenius, K., Vainio, S., Laato, M., Salmivirta, M., Thesleff, R., and Jalkanen, M., 1991, Induced expression of syndecan in healing wounds, J. Cell Biol. 114:585–595.

    Article  PubMed  CAS  Google Scholar 

  • Elenius, K., Maatta, A., Salmivirta, M., and Jalkanen, M., 1992, Growth factors induce 3T3 cells to express bFGF binding syndecan, J. Biol. Chem. 9:6435–6441.

    Google Scholar 

  • Eriksson, E., Breuing, K., Johansen, L. B., and Miller, D. R., 1989, Growth factor solutions for wound treatment in pigs, Surg. Forum 40:618–620.

    Google Scholar 

  • Esch, F., Baird, A., Ling, N., Ueno, N., Hill, F., Denoroy, L., Klepper, R., Gospodarowicz, D., Böhlen, P., and Guillemin, R., 1985, Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF, Proc. Natl. Acad. Sci. USA 82:6507–6511.

    Article  PubMed  CAS  Google Scholar 

  • Fiddes, J. C., Hebda, P. A., Hayward, P., Robson, M. C., Abraham, J. A., and Klingbeil, C. K., 1991, Preclinical wound-healing studies with recombinant human basic fibroblast growth factor, Ann. NY Acad. Sci. 638:316–328.

    Article  PubMed  CAS  Google Scholar 

  • Finch, P. W., Rubin, J. S., Miki, T., Ron, D., and Aaronson, S. A., 1989, Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth, Science 245:752–755.

    Article  PubMed  CAS  Google Scholar 

  • Flaumenhaft, R., and Rifkin, D. B., 1991, Extracellular matrix regulation of growth factor and protease activity, Curr. Opin. Cell Biol. 3:817–823.

    Article  PubMed  CAS  Google Scholar 

  • Florkiewicz, R. Z., and Sommer, A., 1989, Human basic fibroblast growth factor gene encodes four polypeptides: Three initiate translation from non-AUG codons, Proc. Natl. Acad. Sci. USA 86:3978–3981.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J., and Klagsbrun, M., 1987, Angiogenic factors, Science 235:442–447.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J., Klagsbrun, M., Sasse, J., Wadzinski, M., Ingber, D., and Vlodavsky, I., 1988, A heparin-binding and angiogenic protein—basic fibroblast growth factor—is stored within basement membrane, Am. J. Pathol. 130:393–400.

    PubMed  CAS  Google Scholar 

  • Gallo, R. L., Ono, M., Povsic, T., Page, C., Eriksson, E., Klagsbrun, M., and Bernfield, M., 1994, Syndecans, cell surface heparan sulfate proteoglycans are induced by a proline-rich antimicrobial peptide from wounds, Proc. Natl. Acad. Sci. USA 91:11035–11039.

    Article  PubMed  CAS  Google Scholar 

  • Gibran, N. S., Isik, F. F., Heimbach, D. M., and Gordon, D., 1994, Basic fibroblast growth factor in the early human burn wound, J. Surg. Res. 56:226–234.

    Article  PubMed  CAS  Google Scholar 

  • Gimenez-Gallego, G., Rodkey, K., Bennett, C., Rios-Candelore, M., DiSalvo, J., and Thomas, K. A., 1985, Brain-derived acidic fibroblast growth factor: Complete amino acid sequence and homologies, Science 230:1385–1388.

    Article  PubMed  CAS  Google Scholar 

  • Gospodarowicz, D., and Cheng, J., 1986, Heparin protects basic and acidic FGF from inactivation, J. Cell. Physiol. 128:475–484.

    Article  PubMed  CAS  Google Scholar 

  • Grayson, L. S., Hansbrough, J. F., Zapata-Sirvent, R. L., Dore, C. A., Morgan, J. L., and Nicolson, M. A., 1993, Quantitation of cytokine levels in skin graft donor site wound fluid, Burns 19:401–405.

    Article  PubMed  CAS  Google Scholar 

  • Greenhalgh, D. G., and Rieman, M., 1994, Effects of basic fibroblast growth factor on the healing of partial-thickness donor sites: A prospective, randomized, double-blind trial, Wound Repair Regen. 2:113–121.

    Article  PubMed  CAS  Google Scholar 

  • Greenhalgh, D. G., Sprugel, K. H., Murray, M. J., and Ross, R., 1990, PDGF and FGF stimulate wound healing in the genetically diabetic mouse, Am. J. Pathol. 136:1235–1246.

    PubMed  CAS  Google Scholar 

  • Gross, J. L., Moscatelli, D., and Rifkin, D. B., 1983, Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro, Proc. Natl. Acad. Sci. USA 80:2623–2627.

    Article  PubMed  CAS  Google Scholar 

  • Haub, O., Drucker, B., and Goldfarb, M., 1990, Expression of the murine fibroblast growth factor 5 gene in the adult central nervous system, Proc. Natl. Acad. Sci. USA 87:8022–8026.

    Article  PubMed  CAS  Google Scholar 

  • Hayward, P., Hokanson, J., Heggars, J., Fiddes, J., Klingbeil, C., Goeger, M., and Robson, M., 1992, Fibroblast growth factor reverses the bacterial retardation of wound contraction, Am. J. Surg. 163:288–293.

    Article  PubMed  CAS  Google Scholar 

  • Hebda, P. A., Klingbeil, C. K., Abraham, J. A., and Fiddes, J. C., 1990a, Basic fibroblast growth factor stimulation of epidermal wound healing in pigs, J. Invest. Dermatol. 95:626–631.

    Article  PubMed  CAS  Google Scholar 

  • Hebda, P. A., Brady, E. P., Wolfman, N., Stoudemire, J., and Rogers, D., 1990b, Stimulation of epidermal and dermal wound healing by Kaposi sarcoma-derived fibroblast growth factor, J. Invest. Dermatol. 94:534.

    Google Scholar 

  • Hebda, P. A., Colaiacovo, L., Kruse, S. A., Rodgers, R., Morris, C. F., and Pierce, G. F., 1993, Keratinocyte growth factor: Stimulation of epidermal regeneration in partial thickness wounds in pig skin, J. Invest. Dermatol. 100:557.

    Google Scholar 

  • Hébert, J. M., Basilico, C., Goldfarb, M., Haub, O., and Martin, G. R., 1990, Isolation of cDNAs encoding four mouse FGF family members and characterization of their expression patterns during embry-ogenesis, Dev. Biol. 138:454–463.

    Article  PubMed  Google Scholar 

  • Hébert, J. M., Rosenquist, T., Götz, J., and Martin, G. R., 1994, FGF5 as a regulator of the hair growth cycle: Evidence from targeted and spontaneous mutations, Cell 78:1017–1025.

    Article  PubMed  Google Scholar 

  • Houssaint, E., Blanquet, P. R., Champion-Arnaud, P., Gesnel, M. C., Torriglia, A., Courtois, Y., and Breath-nach, R., 1990, Related fibroblast growth factor receptor genes exist in the human genome, Proc. Natl. Acad. Sci. USA 87:8180–8184.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y. Q., Li, J. J., Moscatelli, D., Basilico, C., Nicolaides, A., Zhang, W. G., Polesz, B. J., and Friedman-Kien, A. E., 1993, Expression of INT-2 oncogene in Kaposi’s sarcoma lesions, J. Clin. Invest. 91:1191–1197.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, R. A., Sendtner, M., Goldfarb, M., Lindholm, D., and Thoenen, H., 1993, Evidence that fibroblast growth factor 5 is a major muscle-derived survival factor for cultured spinal motoneurons, Neuron 10:369–377.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, A., Friedman, S., Zhan, X., Engleka, K. A., Forough, R., and Maciag, T., 1992, Heat shock induces the release of fibroblast growth factor 1 from NIH 3T3 cells, Proc. Natl. Acad. Sci. USA 89:10691–10695.

    Article  PubMed  CAS  Google Scholar 

  • Jaye, M., Howk, R., Burgess, W., Ricca, G. A., Chiu, I. M., Ravara, M. W., O’Brien, S. J., Modi, W. S., Maciag, T., and Drohan, W. N., 1986, Human endothelial cell growth factor: Cloning, nucleotide sequence, and chromosome localization, Science 233:541–545.

    Article  PubMed  CAS  Google Scholar 

  • Jaye, M., Burgess, W. H., Shaw, A. B., and Drohan, W. N., 1987, Biological equivalence of natural bovine and recombinant human α-endothelial cell growth factors, J. Biol. Chem. 262:16612–16617.

    PubMed  CAS  Google Scholar 

  • Johnson, D. E., Lee, P. L., Lu, J., and Williams, L. T., 1990, Diverse forms of a receptor for acidic and basic fibroblast growth factors, Mol. Cell. Biol. 10:4728–4736.

    PubMed  CAS  Google Scholar 

  • Johnson, D. E., Lu, J., Chen, H., Werner, S., and Williams, L. T., 1991, The human fibroblast growth factor receptor genes: A common structural arrangement underlies the mechanism for generating receptor forms that differ in their third immunoglobulin domain, Mol. Cell. Biol. 11:4627–46234.

    PubMed  CAS  Google Scholar 

  • Kan, M., Wang, F., Xu, J., Crabb, J. W., Hou, J., and McKeehan, W. L., 1993, An essential heparin-binding domain in the fibroblast growth factor receptor kinase, Science 259:1918–1921.

    Article  PubMed  CAS  Google Scholar 

  • Kandel, J., Bossy-Wetzel, E., Radvany, F., Klagsbrun, M., Folkman, J., and Hanahan, D., 1991, Neovascular-ization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma, Cell 66:1095–1104.

    Article  PubMed  CAS  Google Scholar 

  • Keegan, K., Johnson, D. E., Williams, L. T., and Hayman, M. J., 1991, Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3, Proc. Natl. Acad. Sci. USA 88:1095–1099.

    Article  PubMed  CAS  Google Scholar 

  • Kiefer, P., Mathieu, M., Close, M. J., Peters, G., and Dickson, C., 1993, FGF3 from Xenopus laevis, EMBO J. 12:4159–4168.

    PubMed  CAS  Google Scholar 

  • Klagsbrun, M., 1989, The fibroblast growth factor family: Structural and biological properties, Prog. Growth Factor Res. 1:207–235.

    Article  PubMed  CAS  Google Scholar 

  • Klagsbrun, M., 1990, The affinity of fibroblast growth factors (FGF’s) for heparin: FGF-heparan sulfate interactions in cells and extracellular matrix, Curr. Opin. Cell Biol. 2:857–863.

    Article  PubMed  CAS  Google Scholar 

  • Klagsbrun, M., and Baird, A., 1991, A dual receptor system is required for basic fibroblast growth factor activity, Cell 67:1–20.

    Article  Google Scholar 

  • Klagsbrun, M., and D’Amore, P. A., 1991, Regulators of angiogenesis, Annu. Rev. Physiol. 53:217–239.

    Article  PubMed  CAS  Google Scholar 

  • Klagsbrun, M., and Folkman, J., 1990, Angiogenesis, in: Handbook of Experimental Pharmacology, Volume 95: Peptide Growth Factors and Their Receptors II (M. B. Sporn and A. B. Roberts, eds.), pp. 549–586, Springer-Verlag, Berlin.

    Google Scholar 

  • Klagsbrun, M., and Shing, Y., 1985, Heparin affinity of anionic and cationic capillary endothelial cell growth factors: Analysis of hypothalamus-derived growth factors and fibroblast growth factors, Proc. Natl. Acad. Sci. USA 82:805–809.

    Article  PubMed  CAS  Google Scholar 

  • Klingbeil, C. K., Cesar, L. B., and Fiddes, J. G., 1991, Basic fibroblast growth factor accelerates tissue repair in models of impaired wound healing, in: Clinical and Experimental Approaches to Dermal and Epidermal Repair: Normal and Chronic Wounds (A. Barbul, M. Caldwell, W. Eaglstein, T. Hunt, D. Marshall, E. Pines, and G. Skover, eds.), pp. 443–458, Alan R. Liss, New York.

    Google Scholar 

  • Kornbluth, S., Paulson, K. E., and Hanafusa, H., 1988, Novel tyrosine kinase identified by phosphotyrosine antibody screening of cDNA libraries, Mol. Cell. Biol. 8:5541–5544.

    PubMed  CAS  Google Scholar 

  • Kuchler, K., and Thorner, J., 1992, Secretion of peptides and proteins lacking hydrophobic signal sequences: The role of adenosine triphosphate-driven membrane translocators, Endocr. Rev. 13:499–514.

    PubMed  CAS  Google Scholar 

  • Kurita, Y., Tsuboi, R., Ueki, R., Rifkin, D. B., and Ogawa, H., 1992, Immunohistochemical localization of basic fibroblast growth factor in wound healing sites of mouse skin, Arch. Dermatol. Res. 284:193–197.

    Article  PubMed  CAS  Google Scholar 

  • Lasa, C. I., Kidd, R. R., Nunez, H. A., and Drohan, W. N., 1993, Effect of fibrin glue and Opsite on open wounds in db/db mice, J. Surg. Res. 54:202–206.

    Article  PubMed  CAS  Google Scholar 

  • Lazarou, S. A., Efron, J. E., Shaw, T., Wasserkrug, H. L., and Barbul, A., 1989, Fibroblast growth factor inhibits wound collagen synthesis, Surg. Forum 40:627–629.

    Google Scholar 

  • Lee, P. L., Johnson, D. E., Cousens, L. S., Fried, V. A., and Williams, L. T., 1989, Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor, Science 245:57–60.

    Article  PubMed  CAS  Google Scholar 

  • LeGrand, E. K., Burke, J. F., Costa, D. E., and Kiorpes, T. C., 1993, Dose responsive effects of PDGF-BB, PDGF-AA, EGF, and bFGF on granulation tissue in a guinea pig partial thickness skin excision model, Growth Factors 8:307–314.

    Article  PubMed  CAS  Google Scholar 

  • Linemeyer, D. L., Kelly, L. J., Menke, J. G., Gimenez-Gallego, G., DiSalvo, J., and Thomas, K. A., 1987, Expression in Escherichia coli of a chemically synthesized gene for biologically active bovine acidic fibroblast growth factor, Bio/Technology 5:960–965.

    Article  CAS  Google Scholar 

  • Lobb, R. R., Alderman, E. M., and Fett, J. W., 1985, Induction of angiogenesis by bovine brain derived class I heparin binding growth factor, Biochemistry 24:4969–4973.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, S. E., Colvin, R. B., and Antoniades, H. N., 1989, Growth factors in wound healing: Single and synergistic effects on partial thickness porcine skin wounds, J. Clin. Invest. 84:640–646.

    Article  PubMed  CAS  Google Scholar 

  • Maciag, T., Mehlman, T., Friesel, R., and Schreiber, A. B., 1984, Heparin binds endothelial cell growth factor, the principal endothelial cell mitogen in bovine brain, Science 225:932–935.

    Article  PubMed  CAS  Google Scholar 

  • Mansukhani, A., Moscatelli, D., Talarico, D., Levytska, V., and Basilico, C., 1990, A murine fibroblast growth factor (FGF) receptor expressed in CHO cells is activated by basic FGF and Kaposi FGF, Proc. Natl. Acad. Sci. USA 87:4378–4382.

    Article  PubMed  CAS  Google Scholar 

  • Marchese, C., Rubin, J., Ron, D., Faggioni, A., Torrisi, M. R., Messina, A., Frati, L., and Aaronson, S. A., 1990, Human keratinocyte growth factor activity on proliferation and differentiation of human keratino-cytes: Differentiation response distinguishes KGF from EGF family, J. Cell. Physiol. 144: 326–332.

    Article  PubMed  CAS  Google Scholar 

  • Maries, I., Adelaide, J., Raybaud, F., Mattei, M.-G., Coulier, F., Planche, J., de Lapeyriere, O., and Birnbaum, D., 1989, Characterization of the HST-related FGF.6 gene, a new member of the fibroblast growth factor gene family, Oncogene 4:335–340.

    Google Scholar 

  • Matuszewska, B., Keogan, M., Fisher, D. M., Soper, K. A., Hoe, C.-M., Huber, A. C., and Bondi, J. V., 1994, Acidic fibroblast growth factor: Evaluation of topical formulations in a diabetic mouse wound healing model, Pharm. Res. 11:65–71.

    Article  PubMed  CAS  Google Scholar 

  • Mazué, G., Bertolero, F., Jacob, C., Sarmientos, P., and Boncucci, R., 1991, Preclinical and clinical studies with recombinant human basic fibroblast growth factor, Ann. NY Acad. Sci. 638:329–340.

    Article  PubMed  Google Scholar 

  • McGee, G. S., Davidson, J. M., Buckley, A., Sommer, A., Woodward, S. C., Aquino, A. M., Barbour, R., and Demetriou, A. A., 1988, Recombinant basic fibroblast growth factor accelerates wound healing, J. Surg. Res. 45:145–153.

    Article  PubMed  CAS  Google Scholar 

  • McNeil, P. L., 1993, Cellular and molecular adaptations to injurious mechanical stress, Trends Cell Biol. 3:302–307.

    Article  PubMed  CAS  Google Scholar 

  • McNeil, P. L., Muthukrishnan, L., Warder, E., and D’Amore, P., 1989, Growth factors are released by mechanically wounded endothelial cells, J. Cell Biol. 109:811–822.

    Article  PubMed  CAS  Google Scholar 

  • Mellin, T. N., Mennie, R. J., Cashen, D. E., Ronan, J. J., Capparella, J., James, M. L., Di Salvo, J., Frank, J., Linemeyer, D., Gimenez-Gallego, G., and Thomas, K. A., 1992, Acidic fibroblast growth factor accelerates dermal wound healing, Growth Factors 7:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Mellin, T. N., Cashen, D. E., Ronan, J. J., Murphy, B.S., Di Salvo, J., and Thomas, K. A., 1995, Acidic fibroblast growth factor accelerates dermal wound healing in diabetic mice, J. Invest. Dermatol. 104:850–855.

    Article  PubMed  CAS  Google Scholar 

  • Meyers, S. L., O’Brien, M. T., Smith, T., and Dudley, J. P., 1990, Analysis of the int-1, int-2, c-myc, and neu oncogenes in human breast carcinomas, Cancer Res. 50:5911–5918.

    PubMed  CAS  Google Scholar 

  • Mignatti, P., Tsuboi, R., Robbins, W., and Rifkin, D. B., 1989, In vitro angiogenesis on the human amniotic membrane: Requirement for basic fibroblast growth factor-induced proteinases, J. Cell Biol. 108: 671–682.

    Article  PubMed  CAS  Google Scholar 

  • Mignatti, P., Morimoto, T., and Rifkin, D. B., 1992, Basic fibroblast growth factor, a protein devoid of a secretory signal sequence, is released by cells via a pathway independent of the endoplasmic reticulum-Golgi complex, J. Cell. Physiol. 151:81–93.

    Article  PubMed  CAS  Google Scholar 

  • Miki, T., Fleming, T. P., Bottaro, D. P., Rubin, J. S., Ron, D., and Aaronson, S. A., 1991, Expression cDNA cloning of the KGF receptor by creation of a transforming autocrine loop, Science 251:72–75.

    Article  PubMed  CAS  Google Scholar 

  • Miki, T., Bottaro, D. P., Fleming, T. P., Smith, C. L., Burgess, W. H., Chan, A. M.-L., and Aaronson, S. A., 1992, Determination of ligand-binding specificity by alternative splicing: Two distinct growth factor receptors encoded by a single gene, Proc. Natl. Acad. Sci. USA 89:246–250.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto, M., Naruo, K.-I., Seko, C., Matsumoto, S., Kondo, T., and Kurokawa, T., 1993, Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property, Mol. Cell. Biol. 13:4251–4259.

    PubMed  CAS  Google Scholar 

  • Moscatelli, D., 1987, High and low affinity binding sites for basic fibroblast growth factor on cultured cells: Absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells, J. Cell. Physiol. 131:123–130.

    Article  PubMed  CAS  Google Scholar 

  • Moscatelli, D., and Quarto, N., 1989, Transformation of NIH 3T3 cells with basic fibroblast growth factor or the hst/K-fgf oncogene causes down-regulation of the fibroblast growth factor receptor: Reversal of morphological transformation and restoration of receptor number by suramin, J. Cell Biol. 109:2519–2527.

    Article  PubMed  CAS  Google Scholar 

  • Muller, W. J., Lee, F. S., Dickson, C., Peters, G., Pattengale, P., and Leder, P., 1990, The int-2 gene product acts as an epithelial growth factor in transgenic mice, EMBO J. 9:907–913.

    PubMed  CAS  Google Scholar 

  • Mustoe, T. A., Pierce, G. F., Morishima, C., and Deuel, T. F., 1991, Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model, J. Clin. Invest. 87:694–703.

    Article  PubMed  CAS  Google Scholar 

  • Mustoe, T. A., Ahn, S. T., Tarpley, J. E., and Pierce, G. F., 1994, Role of hypoxia in growth factor responses: Differential effects of basic fibroblast growth factor and platelet-derived growth factor in an ischemic wound model, Wound Repair Regen. 2:277–283.

    Article  PubMed  CAS  Google Scholar 

  • Muthukrishnan, L., Warder, E., and McNeil, P. L., 1991, Basic fibroblast growth factor is efficiently released from a cytosolic storage site through plasma membrane disruptions of endothelial cells, J. Cell. Physiol. 148:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Nabel, E. G., Yang, Z.-Y., Plautz, G., Forough, R., Zhan, X., Haudenschild, C. C., Maciag, T., and Nabel, G. J., 1993, Recombinant fibroblast growth factor-1 promotes intimai hyperplasia and angiogenesis in arteries in vivo, Nature 362:844–846.

    Article  PubMed  CAS  Google Scholar 

  • Niswander, L., and Martin, G. R., 1992, FGF-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse, Development 114:755–768.

    PubMed  CAS  Google Scholar 

  • Nurcombe, V., Ford, D. M., Wildschut, J. A., and Bartlett, P. F., 1993, Developmental regulation of neural response to FGF-1 and FGF-2 by heparan sulfate proteoglycan, Science 260:103–106.

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe, E. J., Chiu, M. L., and Payne, R. E., 1988, Stimulation of growth of keratinocytes by basic fibroblast growth factor, J. Invest. Dermatol. 90:767–769.

    Article  PubMed  Google Scholar 

  • Olwin, B. B., Hannon, K., and Kudla, A. J., 1994, Are fibroblast growth factors regulators of myogenesis in vivo? Prog. Growth Factor Res. 5:145–158.

    Article  PubMed  CAS  Google Scholar 

  • Ornitz, D. M., Moreadith, R. W., and Leder, P., 1991, Binary system for regulating transgene expression in mice: Targeting int-2 gene expression with yeast GAL4/UAS control elements, Proc. Natl. Acad. Sci. USA 88:698–702.

    Article  PubMed  CAS  Google Scholar 

  • Ornitz, D. M., Yayon, A., Flanagan, J. G., Svahn, C. M., Levi, E., and Leder, P., 1992, Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells, Mol. Cell. Biol. 12:240–247.

    PubMed  CAS  Google Scholar 

  • Partanen, J., Makela, T. P., Eerola, E., Korhonen, J., Hirvonen, H., Claesson-Welsh, L., and Alitalo, K., 1991, FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern, EMBO J. 10:1347–1354.

    PubMed  CAS  Google Scholar 

  • Partanen, J., Vainikka, S., Korhonen, J., Armstrong, E., and Alitalo, K., 1992, Diverse receptors for fibroblast growth factors, Prog. Growth Factor Res. 4:69–83.

    Article  PubMed  CAS  Google Scholar 

  • Pasquale, E. B., 1990, A distinctive family of embryonic protein-tyrosine kinase receptors, Proc. Natl. Acad. Sci. USA 87:5812–5816.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, L. G., Geldner, P., Brou, J., Dobbins, S., Hokanson, J., and Robson, M. C., 1990, Correction of diabetic incisional healing impairment with basic fibroblast growth factor, Surg. Forum 41:602–603.

    Google Scholar 

  • Phillips, L. G., Abdullah, K. M., Geldner, P. D., Dobbins, S., Ko, F., Linares, H. A., Broemeling, L. D., and Robson, M. C., 1993, Application of basic fibroblast growth factor may reverse diabetic wound healing impairment, Ann. Plast. Surg. 31:331–334.

    Article  PubMed  CAS  Google Scholar 

  • Pierce, G. F., Tarpley, J. E., Yanagihara, D., Mustoe, T. A., Fox, G. M., and Thomason, A., 1992, Platelet-derived growth factor (BB homodimer), transforming growth factor-βl, and basic fibroblast growth factor in dermal wound healing: Neovessel and matrix formation and cessation of repair, Am. J. Pathol. 140:1375–1388.

    PubMed  CAS  Google Scholar 

  • Pierce, G. F., Yanagihara, D., Klopchin, K., Danilenko, D. M., Hsu, E., Kenney, W. C., and Morris, C. F., 1994, Stimulation of all epithelial elements during skin regeneration by keratinocyte growth factor, J. Exp. Med. 179:831–840.

    Article  PubMed  CAS  Google Scholar 

  • Prats, H., Kaghad, M., Prats, A. C., Klagsbrun, M., Lelias, J. M., Liauzun, P., Chalon, P., Tauber, J. P., Amalric, F., Smith, J. A., and Caput, D., 1989, High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons, Proc. Natl Acad. Sci. USA 86:1836–1840.

    Article  PubMed  CAS  Google Scholar 

  • Rapraeger, A. C., Krufka, A., and Olwin, B. B., 1991, Requirement of heparan sulfate for bFGF mediated fibroblast growth and myoblast differentiation, Science 252:1705–1708.

    Article  PubMed  CAS  Google Scholar 

  • Reiland, J., and Rapraeger, A. C., 1993, Heparan sulfate proteoglycan and FGF receptor target basic FGF to different intracellular destinations, J. Cell Sci. 105:1085–1093.

    PubMed  CAS  Google Scholar 

  • Rifkin, D. B., and Moscatelli, D., 1989, Recent developments in the cell biology of basic fibroblast growth factor, J. Cell Biol. 109:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Robson, M. C., Phillips, L. G., Lawrence, W. T., Bishop, J. B., Youngerman, J. S., Hayward, P. G., Broemeling, L. D., and Heggers, J. P., 1992, The safety and effect of topically applied recombinant basic fibroblast growth factor on the healing of chronic pressure sores, Ann. Surg. 216:401–408.

    Article  PubMed  CAS  Google Scholar 

  • Roghani, M., Mansukhani, A., Dell’Era, P., Bellosta, P., Basilico, C., Rifkin, D. B., and Moscatelli, D., 1994, Heparin increases the affinity of basic fibroblast growth factor for its receptor but is not required for binding, J. Biol. Chem. 269:3976–3984.

    PubMed  CAS  Google Scholar 

  • Rosengart, T. K., Johnson, W. V., Friesel, R., Clark, R., and Maciag, T., 1988, Heparin protects heparin-binding growth factor-1 from proteolytic inactivation in vitro, Biochem. Biophys. Res. Commun. 152:432–440.

    Article  PubMed  CAS  Google Scholar 

  • Ross, R., 1993, The pathogenesis of atherosclerosis: A perspective for the 1990s, Nature 362:801–809.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, J. S., Osada, H., Finch, P. W., Taylor, W. G., Rudikoff, S., and Aaronson, S. A., 1989, Purification and characterization of a newly identified growth factor specific for epithelial cells, Proc. Natl. Acad. Sci. USA 86:802–806.

    Article  PubMed  CAS  Google Scholar 

  • Ruta, M., Burgess, W., Givol, D., Epstein, J., Neiger, N., Kaplow, J., Crumley, G., Dionne, C., Jaye, M., and Schlessinger, J., 1989, Receptor for acidic fibroblast growth factor is related to the tyrosine kinase encoded by the fms-like gene (FLG), Proc. Natl. Acad. Sci. USA 86:8722–8726.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi, K., Yanagashita, M., Takeuchi, Y., and Aurbach, G. D., 1991, Identification of heparan sulfate proteoglycan as a high affinity receptor for acidic fibroblast growth factor (aFGF) in a parathyroid cell line, J. Biol. Chem. 266:7270–7278.

    PubMed  CAS  Google Scholar 

  • Saksela, O., Moscatelli, D., Sommer, A., and Rifkin, D. B., 1988, Endothelial-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation, J. Cell Biol. 107:743–751.

    Article  PubMed  CAS  Google Scholar 

  • Sato, Y., and Rifkin, D. B., 1988, Autocrine activities of basic fibroblast growth factor: Regulation of endothelial cell movement, plasminogen activator synthesis and DNA analysis, J. Cell Biol. 107:1199–1205.

    Article  PubMed  CAS  Google Scholar 

  • Schreier, T., Degen, E., and Baschong, W., 1993, Fibroblast migration and proliferation during in vitro wound healing, Res. Exp. Med. 193:195–205.

    Article  CAS  Google Scholar 

  • Schweigerer, L., Neufeld, G., Friedman, J., Abraham, J. A., Fiddes, J. C., and Gospodarowicz, D., 1987, Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth, Nature 325:257–259.

    Article  PubMed  CAS  Google Scholar 

  • Seno, M., Sasada, R., Iwane, M., Sudo, K., Kurokawa, T., Ito, K., and Igarashi, K., 1988, Stabilizing basic fibroblast growth factor using protein engineering, Biochem. Biophys. Res. Commun. 151:701–708.

    Article  PubMed  CAS  Google Scholar 

  • Shing, Y., Folkman, J., Sullivan, R., Butterfield, C., Murray, J., and Klagsbrun, M., 1984, Heparin affinity: Purification of a tumor-derived capillary endothelial cell growth factor, Science 223:1296–1299.

    Article  PubMed  CAS  Google Scholar 

  • Shing, Y., Folkman, J., Haudenschild, C., Lund, D., Crum, R., and Klagsbrun, M., 1985, Angiogenesis is stimulated by a tumor-derived capillary endothelial cell growth factor, J. Cell. Biochem. 29:275–287.

    Article  PubMed  CAS  Google Scholar 

  • Shipley, G. D., Keeble, W. W., Hendrickson, J. E., Coffey, R. J., and Pittelkow, M. R., 1989, Growth of normal human keratinocytes and fibroblasts in serum-free medium is stimulated by acidic and basic fibroblast growth factor, J. Cell. Physiol. 138:511–518.

    Article  PubMed  CAS  Google Scholar 

  • Slavin, J., Hunt, J. A., Nash, J. R., Williams, D. F., and Kingsnorth, A. N., 1992, Recombinant basic fibroblast growth factor in red blood cell ghosts accelerates incisional wound healing, Br. J. Surg. 79:918–921.

    Article  PubMed  CAS  Google Scholar 

  • Somers, K. D., Cartwright, S. L., and Schechter, G. L., 1990, Amplification of the int-2 gene in human head and neck squamous cell carcinomas, Oncogene 5:915–920.

    PubMed  CAS  Google Scholar 

  • Sommer, A., and Rifkin, D. B., 1989, Interaction of heparin with human basic fibroblast growth factor: Protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan, J. Cell. Physiol. 138:215–220.

    Article  PubMed  CAS  Google Scholar 

  • Sprugel, K. H., McPherson, J. M., Clowes, A. W., and Ross, R., 1987, Effects of growth factors in vivo. I. Cell ingrowth into porous subcutaneous chambers, Am. J. Pathol. 129:601–613.

    PubMed  CAS  Google Scholar 

  • Staiano-Coico, L., Krueger, J. G., Rubin, J. S., D’limi, S., Vallat, V. P., Valentino, L., Fahey, T., Hawes, A., Kingston, G., Madden, M. R., Mathwich, M., Gottlieb, A. B., and Aaronson, S. A., 1993, Human keratinocyte growth factor effects in a porcine model of epidermal wound healing, J. Exp. Med. 178:865–878.

    Article  PubMed  CAS  Google Scholar 

  • Stenberg, B. D., Phillips, L. G., Hokanson, J. A., Heggars, J. P., and Robson, M. C., 1989, Effect of bFGF on the inhibition of contraction caused by bacterial contamination, Surg. Forum 40:629–631.

    Google Scholar 

  • Stenberg, B. D., Phillips, L. G., Hokanson, J. A., Heggers, J. P., and Robson, M. C., 1991, Effect of bFGF on the inhibition of contraction caused by bacteria, J. Surg. Res. 50:47–50.

    Article  PubMed  CAS  Google Scholar 

  • Talarico, D., Ittmann, M. M., Bronson, R., and Basilico, C., 1993, A retrovirus carrying the K-fgf oncogene induces diffuse meningeal tumors and soft-tissue fibrosarcomas, Mol. Cell. Biol. 13:1998–2010.

    PubMed  CAS  Google Scholar 

  • Tanaka, A., Miyamoto, K., Minamino, N., Takeda, M., Sato, B., Matsuo, H., and Matsumoto, K., 1992, Cloning and characterization of an androgen-induced growth factor essential for the androgen-dependent growth of mouse mammary carcinoma cells, Proc. Natl. Acad. Sci. USA 89:8928–8932.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J. A., Haudenschild, C., Anderson, K. D., DiPietro, J. M., Anderson, W. F., and Maciag, T., 1989, Heparin-binding growth factor 1 induces the formation of organoid neovascular structures in vivo, Proc. Natl. Acad. Sci. USA 86:7928–7932.

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi, R., and Rifkin, D. B., 1990, Recombinant basic fibroblast growth factor stimulates wound healing in healing-impaired db/db mice, J. Exp. Med. 172:245–251.

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi, R., Shi, C.-M., Rifkin, D. B., and Ogawa, H., 1992, A wound healing model using healing-impaired diabetic mice, J. Dermatol. 19:673–675.

    PubMed  CAS  Google Scholar 

  • Tsuboi, R., Sato, C., Kurita, Y., Ron, D., Rubin, J. S., and Ogawa, H., 1993, Keratinocyte growth factor (FGF-7) stimulates migration and plasminogen activator activity of normal human keratinocytes, J. Invest. Dermatol. 101:49–53.

    Article  PubMed  CAS  Google Scholar 

  • Uhl, E., Barker, J. H., Bondàr, I., Galla, T. J., Leiderer, R., Lehr, H.-A., and Messmer, K., 1993, Basic fibroblast growth factor accelerates wound healing in chronically ischaemic tissue, Br. J. Surg. 80:977–980.

    Article  PubMed  CAS  Google Scholar 

  • Vlodavsky, I., Friedman, R., Sullivan, R., Sasse, J., and Klagsbrun, M., 1987a, Aortic endothelial cells synthesize basic fibroblast growth factor which remains cell-associated and platelet-derived growth factor-like protein which is secreted, J. Cell. Physiol. 131:402–408.

    Article  PubMed  CAS  Google Scholar 

  • Vlodavsky, I., Folkman, J., Sullivan, R., Friedman, R., Ishai-Michaeli, R., Sasse, J., and Klagsbrun, M., 1987b, Endothelial cell-derived basic fibroblast growth factor: Synthesis and deposition into suben-dothelial extracellular matrix, Proc. Natl. Acad. Sci. USA 84:2292–2296.

    Article  PubMed  CAS  Google Scholar 

  • Vlodavsky, I., Fuks, Z., Ishai-Michaeli, R., Bashkin, P., Levi, E., Korner, G., Bar-Shavit, R., and Klagsbrun, M., 1991, Extracellular matrix-resident basic fibroblast growth factor: Implication for the control of angiogenesis, J. Cell. Biochem. 45:167–176.

    Article  PubMed  CAS  Google Scholar 

  • Werner, S., Roth, W. K., Bates, B., Goldfarb, M., and Hans, P., 1991, Fibroblast growth factor 5 proto-oncogene is expressed in normal human fibroblasts and induced by serum growth factors, Oncogene 6:2137–2144.

    PubMed  CAS  Google Scholar 

  • Werner, S., Peters, K. G., Longaker, M. T., Fuller-Pace, F., Banda, M. J., and Williams, L. T., 1992a, Large induction of keratinocyte growth factor expression in the dermis during wound healing, Proc. Natl. Acad. Sci. USA 89:6896–6900.

    Article  PubMed  CAS  Google Scholar 

  • Werner, S., Duan, D.-S. R., deVries, C., Peters, K. G., Johnson, D. E., and Williams, L. T., 1992b, Differential splicing in the extracellular region of fibroblast growth factor receptor-1 generates receptor variants with different ligand-binding specificities, Mol. Cell. Biol. 12:82–88.

    PubMed  CAS  Google Scholar 

  • Werner, S., Breeden, M., Hübner, G., Greenhalgh, D. G., and Longaker, M. T., 1994a, Induction of keratinocyte growth factor expression is reduced and delayed during wound healing in the genetically diabetic mouse, J. Invest. Dermatol. 103:469–473.

    Article  PubMed  CAS  Google Scholar 

  • Werner, S., Smola, H., Liao, X., Longaker, M. T., Krieg, T., Hofschneider, P. H., and Williams, L. T., 1994b, The function of KGF in morphogenesis of epithelium and reepithelialization of wounds, Science 266:819–822.

    Article  PubMed  CAS  Google Scholar 

  • Whitby, D. J., and Ferguson, M. W. J., 1991a, Immunohistochemical localization of growth factors in fetal wound healing, Dev. Biol. 147:207–215.

    Article  PubMed  CAS  Google Scholar 

  • Whitby, D. J., and Ferguson, M. W. J., 1991b, The extracellular matrix of lip wounds in fetal, neonatal, and adult mice, Development 112:651–668.

    PubMed  CAS  Google Scholar 

  • Wilkinson, D. G., Peters, G., Dickson, C., and McMahon, A. P., 1988, Expression of the FGF-related proto-oncogene int-2 during gastrulation and neurulation in the mouse, EMBO J 7:691–695.

    PubMed  CAS  Google Scholar 

  • Wilkinson, D. G., Bhatt, S., and McMahon, A. P., 1989, Expression pattern of the FGF-related proto-oncogene int-2 suggests multiple roles in fetal development, Development 105:131–136.

    PubMed  CAS  Google Scholar 

  • Wu, L., and Mustoe, T. A., 1995, Effect of ischemia upon growth factor enhancement of incisional wound healing, Surgery, 117:570–576.

    Article  PubMed  CAS  Google Scholar 

  • Wu, L., Pierce, G. F., Ladin, D. A., Zhao, L. L., and Mustoe, T. A., 1993, KGF accelerates ischemie dermal ulcer healing in the rabbit ear, Surg. Forum 44:704–706.

    Google Scholar 

  • Wu, L., Pierce, G. F., Ladin, D. A., Zhao, L. L., Rogers, D., and Mustoe, T. A., 1995, Effects of oxygen on wound responses to growth factors: Kaposi’s FGF, but not basic FGF, stimulates repair in ischemic wounds, Growth Factors, in press.

    Google Scholar 

  • Yanagisawa-Miwa, A., Uchida, Y., Nakamura, F., Tomaru, T., Kido, H., Kaimjo, T., Sugimoto, T., Kaji, K., Utsuyama, M., Kurashima, C., and Ito, H., 1992, Salvage of infected myocardium by angiogenic action of basic fibroblast growth factor, Science 257:1401–1403.

    Article  PubMed  CAS  Google Scholar 

  • Yayon, A., and Klagsbrun, M., 1990, Autocrine transformation by chimeric signal peptide-basic fibroblast growth factor: Reversal by suramin, Proc. Natl. Acad. Sci. USA 87:5346–5350.

    Article  PubMed  CAS  Google Scholar 

  • Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M., 1991, Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor, Cell 64:841–848.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, T., Miyagawa, K., Odagiri, H., Sakamoto, H., Little, P. F. R., Terada, M., and Sugimura, T., 1987, Genomic sequence of hst, a transforming gene encoding a protein homologous to fibroblast growth factors and the int-2 encoded protein, Proc. Natl. Acad. Sci. USA 84:7305–7309.

    Article  PubMed  CAS  Google Scholar 

  • Zhan, X., Bates, B., Hu, X., and Goldfarb, M., 1988, The human FGF-5 oncogene encodes a novel protein related to fibroblast growth factors, Mol. Cell. Biol. 8:3487–3495.

    PubMed  CAS  Google Scholar 

  • Zhou, D. J., Casey, G., and Cline, M. J., 1988, Amplification of human int-2 in breast cancers and squamous carcinomas, Oncogene 2:279–282.

    PubMed  CAS  Google Scholar 

  • Zhu, X., Komiya, H., Chirino, A., Faham, S., Hsu, B. T., and Rees, D. C., 1991, Three-dimensional structures of acidic and basic fibroblast growth factors, Science 251:90–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abraham, J.A., Klagsbrun, M. (1988). Modulation of Wound Repair by Members of the Fibroblast Growth Factor Family. In: Clark, R.A.F. (eds) The Molecular and Cellular Biology of Wound Repair. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0185-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0185-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0187-3

  • Online ISBN: 978-1-4899-0185-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics