Skip to main content

Characterization of the Volume-Activated Taurine Pathway in Cultured Cerebellar Granule Neurons

  • Chapter
Taurine 2

Abstract

Early studies on the mechanism of cell taurine transport have consistently identified a component of taurine uptake which is nonsaturable, energy-independent and clearly corresponding to a diffusional mechanism. For long time this component was normally discarded in all studies of taurine uptake in order to obtain the saturable curves of the energy-dependent, high affinity component, which was associated with a presumed neurotransmitter function for taurine. The recent studies on a role for taurine as an osmolyte have praised the diffusional component of the transport system as it has been identified as the mechanism allowing a rapid extrusion of the amino acid to regulate, together with other osmolytes, the cell water content. The occurrence and features of the two components of the taurine transport system fit very adequately this osmolyte role: a diffusional, rapid release of intracellular pools corrects almost immediately an excess of cell water and after this regulatory function, the intracellular taurine pools are replenished by the energy-dependent, high affinity component, which is able to accumulate taurine against large concentration gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banderali, U. and Roy, G. 1992, Anion channels for amino acids in MDCK cells, Am.J.Physiol. 263:C1200–C1207.

    CAS  Google Scholar 

  2. Benz, R. 1994, Permeation of hydrophilic solutes through mitochondrial outer membranes: review on mitochondrial porins, Biochim.Biophys.Acta, 1197:167–196.

    Article  CAS  Google Scholar 

  3. Dermietzel, R., Hwang, T., Buettner, R., Hofer, A., Dotzler, E., Kremer, M., Deutzmann, R., Thinnes, F.P., Fishman, G.I., Spray, D.C., and Siemen, D. 1994, Cloning and in situ localization of a brain-derived porin that constitutes a large conductance anion channel in astrocytic plasma membranes, Proc. NatlAcad. Scl USA, 91:499–503.

    Article  CAS  Google Scholar 

  4. Falke, J.J. and Chan, S.I. 1986, Molecular mechanisms of band 3 inhibitors: I transport site inhibitors, Biochemistry, 25:7888–7894.

    Article  CAS  Google Scholar 

  5. Goldstein, L. and Brill, S.R. 1991, Volume-activated taurine efflux from skate erythrocytes: Possible band 3 involvement, Am.J.Physiol. 260:R1014–R1020.

    CAS  Google Scholar 

  6. Hallows, K.R. and Knauff, P.A. 1994, Principles of cell volume regulations, in: “Cellular and Molecular Physiology of Cell Volume Regulation”, Strange, K. ed., CRC Press, Boca Raton, pp. 3–30.

    Google Scholar 

  7. Hoffmann, E.K. and Simonsen, L.O. 1989, Membrane mechanisms in volume and pH regulation in vertebrate cells, Physiol.Rev. 69:315–382.

    CAS  Google Scholar 

  8. Hollt, V, Kouba, M., Dietel, M., and Vogt, G. 1992, Steroisomers of calcium antagonists which differ markedly in their potencies as calcium blockers are equally effective in modulating drug transport by p-glycoprotein, Biochem.Pharmacol. 3:2601–2608.

    Article  Google Scholar 

  9. Jackson, P.S. and Strange, K. 1993, Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux, Am.J.Physiol. 265:C1489–C1500.

    CAS  Google Scholar 

  10. Jentsch, T. 1994, Molecular physiology of anion channels, Curr.Opin.Cell Biol. 6:600–606.

    Article  CAS  Google Scholar 

  11. Kay, M.M.B., Hughes, J., Zagón, I., and Lin, F. 1991, Brain membrane protein 3 performs the same functions as erythrocyte band 3, Proc.Natl.Acad.Sci.USA, 88:2778–2782.

    Article  CAS  Google Scholar 

  12. Lehmann, A. 1990, Derangements in cerebral osmohomeostasis: A common denominator for stimulation of taurine and phosphoethanolamine release, in: “Taurine: Functional Neurochemistry, Physiology, and Cardiology”, Pasantes-Morales, H., Martin, D.L., Shain, W. and del Río, R.M. eds., Wiley-Liss, New York, pp. 337–347.

    Google Scholar 

  13. Ordway, R.W., Singer, J.J., and Walsh, J.V. 1991, Direct regulation of ion channels by fatty acids, Trends Neurosci. 14:96–100.

    Article  CAS  Google Scholar 

  14. Pasantes-Morales, H., Chacón, E., Murray, R.A., and Morán, J. 1994, Properties of osmolyte fluxes activated during regulatory volume decrease in cultured cerebellar granule neurons, J.Neurosci.Res. 37:720–727.

    Article  CAS  Google Scholar 

  15. Pasantes-Morales, H. and Del Río, R.M. 1990, Taurine and mechanisms of cell volume regulation, in: “Taurine: Functional Neurochemistry, Physiology, and Cardiology”, Pasantes-Morales, H., Martin, D.L., Shain, W. and del Río, R.M. eds., Wiley-Liss, New York, pp. 317–328.

    Google Scholar 

  16. Paulmich, M., Gschwentner, M., Woll, E., Schmarda, A., Ritter, M., Kanin, G., Ellemunter, H., Waitz, W., and Deetjen, P. 1993, Insight into the structure-function relation of chloride channels, Cell Physiol.Biochem. 3:374–387.

    Article  Google Scholar 

  17. Sanchez-Olea, R., Morán, J., Schousboe, A., and Pasantes-Morales, H. 1991, Hyposmolarity-activated fluxes of taurine in astrocytes are mediated by diffusion, Neurosci.Lett. 130:233–236.

    Article  CAS  Google Scholar 

  18. Sánchez-Olea, R., Morales-Mulia, M., Morán, J., and Pasantes-Morales, H. 1995, Inhibition by polyunsaturated fatty acids of cell volume regulation and osmolyte fluxes in astrocytes, Am.J.Physiol. 269:C96–C102.

    Google Scholar 

  19. Sánchez-Olea, R., Morán, J., and Pasantes-Morales, H. 1992, Changes in taurine transport evoked by hyperosmolarity in cultured astrocytes, J.Neurosci.Res. 32:86–92.

    Article  Google Scholar 

  20. Sánchez-Olea, R., Peña, C., Morán, J., and Pasantes-Morales, H. 1993, Inhibition of volume regulation and efflux of osmoregulatory amino acids by blockers of Cl- transport in cultured astocytes, Neurosci.Lett. 156:141–144.

    Article  Google Scholar 

  21. Schousboe, A., Sánchez Olea, R., Morán, J., and Pasantes-Morales, H. 1991, Hyposmolarity-induced taurine release in cerebellar granule cells is associated with diffusion and not with high-affinity transport, J.Neurosci.Res. 30:661–665.

    Article  CAS  Google Scholar 

  22. Solís, J.M., Herranz, A.S., Herreras, O., Lerma, J., and Del Río, R.M. 1988, Does taurine act as an osmoregulatory substance in the rat brain, Neurosci.Lett. 91:53–58.

    Article  Google Scholar 

  23. Thurston, J.H., Hauhart, R.E., and Dirgo, J.A. 1980, Taurine: a role in osmotic regulation of mammalian brain and possible clinical significance, Life Sci. 26:1561–1568.

    Article  CAS  Google Scholar 

  24. Trachtman, H., Futterweit, S., and Del Pizzo, R. 1992, Taurine and osmoregulation. IV. Cerebral taurine transport is increased in rats with hypernatremic dehydration, Pediatr.Res. 32:118–124.

    Article  CAS  Google Scholar 

  25. Tratchman, H., Barbour, R., and Sturman, J.A. 1988, Taurine and osmoregulation: taurine is a cerebral osmoprotective molecule in chronic hypernatremic dehydration, Pediatr.Res. 23:35–41.

    Article  Google Scholar 

  26. Valverde, M.A., Diaz, M., Gill, F.V, Hyde, S.C., and Higgins, C.F. 1992, Volume-regulated chloride channels associated with the human multidrug resistance p-glycoprotein, Nature, 355:830–833.

    Article  CAS  Google Scholar 

  27. Wade, J.V, Olson, J.P., Samson, F.E., Nelson, S.R., and Pazdernik, T.L. 1988, A possible role for taurine in osmoregulation within the brain, J.Neurochem. 51:740–745.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pasantes-Morales, H., Segura, C.P., García, O., Mulia, M.M.M., Olea, R.S., Morán, J. (1996). Characterization of the Volume-Activated Taurine Pathway in Cultured Cerebellar Granule Neurons. In: Huxtable, R.J., Azuma, J., Kuriyama, K., Nakagawa, M., Baba, A. (eds) Taurine 2. Advances in Experimental Medicine and Biology, vol 403. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0182-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0182-8_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0184-2

  • Online ISBN: 978-1-4899-0182-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics