Skip to main content

PAF-Synthesizing Enzymes in Neural Cells during Differentiation and in Gerbil Brain during Ischemia

  • Chapter
Platelet-Activating Factor and Related Lipid Mediators 2

Abstract

Platelet-Activating Factor (PAF) is present in mammalian brain1 and its cerebral origin has been demonstrated2. Furthermore, the capability of nervous tissue to produce PAF is supported by the observations that neural cells in culture synthesize this lipid mediator3,4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tokumura A., Kamiyasu K., Takanchi K., and Tsukatani H. (1987). Evidence for the existence of various homologues and analogues of platelet activating factor in a lipid extract from bovine brain. Biochem. Biophys. Res. Commun. 145, 415–425.

    Article  PubMed  CAS  Google Scholar 

  2. Kumar R., Harvey S.A.K., Kester M., Hanahan D.J. and Olson MS. (1988). Production and effects of Platelet-activating factor in the rat brain. Biochim. Biophys. Acta 963, 375–383.

    Article  PubMed  CAS  Google Scholar 

  3. Sogos V., Bussolino F., Pilia E., Torelli S. and Gremo F. (1990). Acetylcholine-induced production of Platelet-activating factor by human fetal brain cells in culture. J. Neurosc. Res. 27, 706–711.

    Article  CAS  Google Scholar 

  4. Yue T.L., Lysko P.G. and Feuerstein G. (1990). Production of platelet activating factor from rat cerebellar granule cells in culture. J. Neurochem. 54, 1809–1811.

    Article  PubMed  CAS  Google Scholar 

  5. Bussolino F., Gremo F., Tetta C., Pescarmona G.P. and Camussi G. (1986) Production of platelet-activating factor by chick retina. J. Biol. Chem. 261, 16502–16508.

    PubMed  CAS  Google Scholar 

  6. Bussolino F., Pescarmona G., Camussi G. and Gremo F. (1988a). Acetylcholine and dopamine promote the production of platelet activating factor in immature cells of chick embryonic retina. J. Neurochem. 51, 1755–1759.

    Article  PubMed  CAS  Google Scholar 

  7. Bussolino F., Tessari F., Turrini F., Braquet P., Camussi G., Prosdocimi M. and Bosia A. (1988b). Platelet-activating factor induces dopamine release in PC-12 cell line. Am. J. Physiol. 255, (Cell physiol) 24, 1755–1759.

    Google Scholar 

  8. Clark G.D., Happel L.T., Zorumski C.F. and Bazan (1992). Enhancement of hippocampal excitatory synaptic transmission by platelet activating factor. Neuron 9, 1211–1216

    Article  PubMed  CAS  Google Scholar 

  9. Marcheselli V.L., Rossowska M.J., Domingo M.T., Braquet P. and Bazan N.J. (1990). Distinct Platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J. Biol. Chem. 265, 9140–9145.

    PubMed  CAS  Google Scholar 

  10. Marcheselli V.L. and Bazan N.G. (1994). Platelet-activating factor is a messenger in the electroconvulsive shock.induced transcriptional activation of c-fos and zif-268 in hipocampus. J. Neurosci. Res. 37, 54–61.

    Article  PubMed  CAS  Google Scholar 

  11. Kato K., Clark G.D., Bazan N.G. and Zorumski C.F. (1994). Platelet-activating factor as a potential retrograde messenger in CA I hippocampal long-term potentiation. Nature 367, 173–179.

    Article  Google Scholar 

  12. Wierasko A., Li G., Kornecki E., Hogan M.V. and Ehrlich Y.H. (1993) Long term potentiation in the hippo-campus induced by platelet-activating factor. Neuron 10, 553–557.

    Article  Google Scholar 

  13. Izquerdo I., Fin C., Schmitz P.K., Da Silva R.C., Jerusalinsky D., Quillfeldt J.A., Ferreira M.B.G., Medina J.H. and Bazan N.G. (1995). Memory enhancement by intrahippocampal, intraamygdala, or intraentorhinal infusion of platelet-activating factor measured in an inhibitory avoidance task. Proc. Natl. Acad. Sci. USA 92, 5047–5051.

    Article  Google Scholar 

  14. Braquet P., Paubert-Braquet M., Koltei M., Bourgain R., Bussolino F. and Hosford D. (1989). Is there a case for PAF antagonist in the treatment of ischemic states? TIPS 10, 23–30.

    PubMed  CAS  Google Scholar 

  15. Lindsberg P.J., Yue T-L., Frerichs K.U, Hallenbeck and Feuerstein G. (1990). Evidence for Platelet-activating factor as a novel mediator in experimental stroke in rabbits. Stroke 21, 1452–1457.

    CAS  Google Scholar 

  16. Goracci G. (1990). PAF in the nervous system: biochemistry and pathophysiology. In: Krieglstein J. and Oberpichler H., Eds., Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellshaft, Stuttgart, pp. 377–390.

    Google Scholar 

  17. Lee T-c., Malone B. and Snyder F. (1986). A new de novo pathway for the formation of 1-alkyl-2-acetylsn-glycerols, precursors of Platelet Activating Factor. J.Biol. Chem., 261, 5373–5377.

    PubMed  CAS  Google Scholar 

  18. Baker, R.R. and Chang H-y. (1993). The potential for Platelet-activating factor synthesis in brain: properties of cholinetransferase and 1-alkyl-sn-glycero-3-phosphate acetyltransferase in microsomal fractions of immature rabbit cerebral cortex. Biochim. Biophys. Acta 1170, 157–164.

    Article  PubMed  CAS  Google Scholar 

  19. Lee T-c., Malone B. and Snyder F. (1988). Formation of 1-alkyl-2-acetyl-sn-glycerols via de novo biosynthetic pathway for Platelet Activating Factor. J.Biol.Chem., 263, 1755–1760.

    PubMed  CAS  Google Scholar 

  20. Francescangeli E. and Goracci G. (1989) The de novo biosynthesis of platelet-activating factor in the rat brain. Biochem. Biophys. Res. Commun. 161, 107–112.

    Article  PubMed  CAS  Google Scholar 

  21. Woelk H., Goracci G. and Porcellati G. (1974). The action of brain phospholipase A, on purified specifically labeled 1,2-diacyl, 2-acyl 1-alk-l’anyl and 2-acyl-1-alkyl-sn glycero-3 phosphorylcholine. HoppeSeyler’s Z. Physiol. Chem. 355, 75–81.

    Article  CAS  Google Scholar 

  22. Blank M.L., Smith Z.L., Fitzgerald V. and Snyder F. (1995). The CoA.independent transacylase in PAF biosynthesis: tissue distribution and molecular species selectivity. Biochim. Biophys. Acta 1254, 295–301.

    Google Scholar 

  23. Goracci G. and Francescangeli E. (1991) Properties of PAF-synthesizing phosphocholinetransferase and evidence for lysoPAF acetyltransferase activity in rat brain. Lipids 26, 986–991

    Article  PubMed  CAS  Google Scholar 

  24. Hattori M., Arai H. and Inoue K. (1993). Purification and characterization of bovine brain Platelet-activating factor acetylhydrolase. J. Biol. Chem. 268, 18748–18753.

    PubMed  CAS  Google Scholar 

  25. Kornecki E. and Ehrlich Y.H. (1988) Neuroregulatory and neuropathological actions of the ether-phospholipid platelet-activating factor. Science 240, 1792–1794.

    Article  PubMed  CAS  Google Scholar 

  26. Francescangeli E., Freysz L., Dreyfus H., Boila A. and Goracci G. (1993). Biosynthesis of I-alkyl-2-acetysn-glycero-3-phosphocholine (Platelet activating factor) in cultured neuronal and glial cells. In: Massarelli R., Horrocks L.A., Kanfer J. N., Loffelholz K., eds., Phospholipis and Signal Transmission. Springer-Verlag, Berlin Heidelberg, NATO Asi, vol. 70, pp 373–385.

    Chapter  Google Scholar 

  27. Francescangeli E., Lang D., Dreyfus H., Boila A., Freysz L. and Goracci G (1996). Activities of enzymes involved in the metabolism of platelet-activating factor in neural cell cultures during proliferation and differentiation. Submitted

    Google Scholar 

  28. Ninio E., Mencia-Huerta J.M. and Benveniste J. (1983). Biosynthesis of platelet-activating factor (PAFacether). V. Enhancement of acetyltransferase activity in murine peritoneal cells by calcium ionophore A23187. Biochim. Biophys. Acta 751, 298–304.

    Article  PubMed  CAS  Google Scholar 

  29. Gomez-Cambronero J., Inarrea P., Alonso F. and Sanchez-Crespo H. (1984). The role of calcium ions in the process of acetyltransferase activation during the formation of platelet-activating factor ( PAF-acether ). Biochemistry 219, 419–424

    CAS  Google Scholar 

  30. Francescangeli E., Goracci G., Dreyfus H., Boila A. and Freysz L. (1993). Synthesis of Platelet-activating factor (PAF) during differentiation of the human neuroblastoma cell LA-N-1. J.Neurochem. 61, 239.

    Article  Google Scholar 

  31. Stephenson D.T., Manetta J.V., White D.L., Chiou X.G., Cox L., Gitter B., May P.C., Sharp J.D., Kramer R.M. and Clemens J.A. (1994). Calcium-sensitive cytosolic phospholipase A2 (cPLA,) is expressed in human brain astrocytes. Brain Res. 637, 97–105.

    Article  PubMed  CAS  Google Scholar 

  32. Tiberghien C., Laurent L., Junier M.P. and Dray F. (1991). A competitive receptor binding assay for Platelet-activating factor (PAF). Quantification of PAF in rat brain. J. Lipid Med. 3, 249–266.

    CAS  Google Scholar 

  33. Domingo M.T., Spinnewyn P., Chabrier E. and Braquet P. (1994). Changes in [3H]PAF binding and PAF concentrations in gerbil brain after bilateral common carotid artery occlusion: a quantitative autoradiographic study. Brain Res. 640, 268–276.

    Article  PubMed  CAS  Google Scholar 

  34. Francescangeli E., Domanska-Janik K. and Goracci G. (1996). Relative contribution of the de novo and the remodelling pathways to the synthesis of Platelet activating factor in brain areas and during ischemia. J.Lipid Med. in press.

    Google Scholar 

  35. Francescangeli E., Freysz L. and Goracci G. (1994). Regulation of Platelet-activating factor (PAF) metabolism in nervous tissue and in cultured neural cells. J. Neurochem 63, suppl. 1, 22.

    Google Scholar 

  36. Snyder F. (1995). Platelet-activating factor: the biosynthetic and catabolic enzymes. Biochem. J. 305, 689–705.

    PubMed  CAS  Google Scholar 

  37. Onodera H., Araki T. and Kogure K. (1989). Protein kinase C activity in the rat hippocampus after forebrain ischemic autoradiographic analysis by [3H]phorbol-12,13-dibutyrate. Brain Res. 48, 1–7.

    Article  Google Scholar 

  38. Domanka-Janik K and Zalewaka T. (1992). Effect of brain ischemia on protein kinase C. J. Neurochem. 58, 1432–1439.

    Article  Google Scholar 

  39. Siesjö B.K. and Bengtsson F. (1989). Calcium fluxes, calcium antagonist and calcium-related pathology in brain ischemia, hypoglycemia and spreading depression. A unifying hypothesis. J. Cereb. Blood Flow Metab. 9, 127–140.

    Article  PubMed  Google Scholar 

  40. Ljunggren B., Schultz H. and Siesjo B.K. (1974) Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia. Brain Res. 73, 277–289.

    Article  PubMed  CAS  Google Scholar 

  41. Goracci G., Francescangeli E., Mozzi R., Porcellati S. and Porcellati G. (1985). Regulation of phospholipid metabolism by nucleotides in brain and transport of CDP-choline into brain. In: Zappia V., Kennedy E.P., Nilsson B.J. and Galletti P. eds., Novel Biochemical, Pharmacologiocal and clinical aspects of cytidinediphosphocholine. Elsevier, New York, pp 105–116

    Google Scholar 

  42. Bazan N.G. (1970). Effect of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta, 218, 1–10

    Article  PubMed  CAS  Google Scholar 

  43. Farooqui A.A., Hirashima Y., Forooqui T. and Horrocks L.A. (1992). Involvement of calcium, lipolytic enzymes and free fatty acids in ischemic brain trauma. In: Bazan NG, Braquet P and Ginsberg MD eds., Neurochemical correlates of cerebral ischemia. Plenum Press, New York, pp 117–138.

    Chapter  Google Scholar 

  44. Goracci G., Francescangeli E., Horrocks L.A. and Porcellati G. (1983). The effect of CMP on the release of free fatty acids of rat brain in vitro.. Neurochem. Res. 8, 971–981.

    Article  PubMed  CAS  Google Scholar 

  45. Rordorf G., Uemura Y. and Bonventre J.V. (1991). Characterization of Phospholipase A, (PLA,) activity in gerbil brain: enhanced activities of cytosolic, mitochondrial, and microsomal forms after ischemia and reperfusion. J. Neurosc. 11, 1829–1836.

    CAS  Google Scholar 

  46. Bonventre J.V. and Koroshetz W.J. (1993). Phospholipase A, (PLA,) activity in gerbil brain: characterization of cytosolic and membrane-associated forms and effects of ischemia and reperfusion on enzymatic activity. J. Lipid Med. 6, 457–471.

    CAS  Google Scholar 

  47. Yang H-C., Farooqui A.A. and Horrocks L.A.(1995). Purification and characterization of a calcium-independent phospholipase A, from bovine brain. (1995) J. Neurochem. 65, 177.

    Google Scholar 

  48. Kirino T., and Saito, K. (1984). Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol. 62, 201–208.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Francescangeli, E., Freysz, L., Goracci, G. (1996). PAF-Synthesizing Enzymes in Neural Cells during Differentiation and in Gerbil Brain during Ischemia. In: Nigam, S., Kunkel, G., Prescott, S.M. (eds) Platelet-Activating Factor and Related Lipid Mediators 2. Advances in Experimental Medicine and Biology, vol 416. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0179-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0179-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0181-1

  • Online ISBN: 978-1-4899-0179-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics