Skip to main content

Transport Systems in Pseudomonas

  • Chapter
Pseudomonas

Part of the book series: Biotechnology Handbooks ((BTHA,volume 10))

  • 392 Accesses

Abstract

Nutrient acquisition and waste excretion are important functions of all living cells including bacteria. Cellular membranes composed of lipid bilayers are inherently impermeable to most nutrients and wastes because of their hydrophilicity. Therefore, living organisms have developed a variety of transport systems that accumulate or excrete a particular solute across the cytoplasmic membrane. These transport systems either equilibrate solutes across the membrane (facilitated diffusion) or use energy to concentrate solutes (active transport). In bacteria, most solutes are translocated across the cytoplasmic membrane by active transport systems, which allow accumulation of solute in chemically unmodified form against a concentration gradient. Such transport systems can be classified into two classes according to the mode of energy coupling (Harold, 1972; Konings et al., 1989): primary transport systems that are directly coupled to biochemical reaction to translocate solutes across the cytoplasmic membrane; and secondary transport systems that utilize electrochemical energy of some compound (mostly electrochemical potential of protons or Na+ ions) generated by metabolic reaction. Another important mechanisms for accumulation of solute employed by bacteria is group translocation, which couples the translocation of a solute across the membrane to the chemical modification of the solute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M. D., Wagner, L. M., Graddis, T. J., Landick, R., Antonucci, T. K., Gibson, A. L., and Oxender, D. L., 1990, Nucleotide sequence and genetic characterization reveal six essential genes for the LIV-I and LS transport systems of Escherichia coli, J. Biol. Chem. 265: 11436–11443.

    CAS  PubMed  Google Scholar 

  • Allenza, P., Lee, Y. N., and Lessie, T. G., 1982, Enzymes related to fructose utilization in Pseudomonas cepacia, J. Bacteriol. 150: 1348–1356.

    CAS  PubMed  Google Scholar 

  • Ames, G. F.-L., 1986, Bacterial periplasmic transport systems: Structure, mechanism, and function, Ann. Rev. Biochem. 55: 397–425.

    CAS  PubMed  Google Scholar 

  • Armitage, J. P., and Evans, M. C. W., 1983, The motile and tactic behaviour of Pseudomonas aeruginosa in anaerobic environments, FEBS Lett. 156: 113–118.

    CAS  PubMed  Google Scholar 

  • Baumann, P., and Baumann, L., 1975, Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffi, Arch. Microbiol. 105: 225–240.

    CAS  PubMed  Google Scholar 

  • Berger, E. A., and Heppel, L. A., 1974, Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli, J. Biol. Chem. 249: 7747–7755.

    CAS  PubMed  Google Scholar 

  • Betlach, M. R., Tieje, J. M., and Firestone, R. B., 1981, Assimilatory nitrate uptake in Pseudomonas fluorescens studied using nitrogen-13, Arch. Microbiol. 129: 135–140.

    CAS  PubMed  Google Scholar 

  • Bishop, L., Agbayani, R., Jr., Ambudkar, S. V., Maloney, P. C., and Ames, G. F.-L., 1989, Reconstitution of a bacterial periplasmic permease in proteoliposomes and demonstration of ATP hydrolysis concomitant with transport, Proc. Natl. Acad. Sci. USA 86: 6953–6957.

    CAS  PubMed  Google Scholar 

  • Botfield, M. C., Naguchi, K., Tsuchiya, T., and Wilson, T. H., 1992, Membrane topology of the melibiose carrier of Eschericia coli, J. Biol. Chem. 267: 1818–1822.

    CAS  PubMed  Google Scholar 

  • Büchel, D. E., Gronenborn, B., and Muller-Hill, B., 1980, Sequence of the lactose permease gene, Nature 283: 541–545.

    PubMed  Google Scholar 

  • Cervantes, C., and Silver, S., 1990, Inorganic cation and anion transport systems of Pseudomonas, in: Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology (S. Silver, A. M. Chakrabarty, B. Iglewski, and S. Kaplan, eds.), American Society of Microbiology, Washington, D.C., pp. 359–372.

    Google Scholar 

  • Cuskey, S. M., and Phibbs, P. V., Jr., 1985, Chromosomal mapping of mutations affecting glycerol and glucose catabolism in Pseudomonas aeruginosa PAO, J. Bacteriol. 162: 872–880.

    CAS  PubMed  Google Scholar 

  • Davidson, A. L., and Nikaido, H., 1990, Overproduction, solubilization, and reconstitution of the maltose transport system from Escherichia coli, J. Biol. Chem. 265: 4245–4260.

    Google Scholar 

  • Deshusses, J. P., 1985, Myo-inositol transport in bacteria: H+ symport and periplasmic binding protein dependence, Ann. N. Y. Acad. Sci. 456: 351–360.

    CAS  PubMed  Google Scholar 

  • Deshusses, J., and Belet, M., 1984, Purification and properties of the myo-inositol-binding protein from a Pseudomonas sp., J. Bacteriol. 159: 179–183.

    CAS  PubMed  Google Scholar 

  • Dias, F. M., Ventullo, R. M., and Rowe, J. J., 1990, Regulation and energization of nitrate transport in a halophilic Pseudomonas stützen, Biochem. Biophys. Res. Commun. 166: 424–430.

    CAS  PubMed  Google Scholar 

  • Doige, C. A., and Ames, G. F.-L., 1993, ATP-dependent transport systems in bacteria and humans: Relevance to cystic fibrosis and multidrug resistance, Ann. Rev. Microbiol. 47: 291–319.

    CAS  Google Scholar 

  • Dreyfuss, J., 1964, Characterization of a sulfate-and thiosulfate-transporting system in Salmonella typhimurium, J. Biol. Chem. 239: 2292–2297.

    CAS  PubMed  Google Scholar 

  • Durham, D. A., and Phibbs, P. V., Jr., 1982, Fractionation and characterization of the phosphoenolpyruvate: fructose 1-phosphotransferase system from Pseudomonas aeruginosa, J. Bacteriol. 149: 534–541.

    CAS  PubMed  Google Scholar 

  • Eagon, R. G., and Phibbs, P. V., Jr., 1971, Kinetics of transport of glucose, fructose, and mannitol by Pseudomonas aeruginosa, Can. J. Biochem. 49: 1031–1041.

    CAS  PubMed  Google Scholar 

  • Eisenberg, R. C, and Phibbs, P. V., Jr., 1982, Characterization of an inducible mannitolbinding protein from Pseudomonas aeruginosa, Curr. Microbiol. 7:229–234.

    CAS  Google Scholar 

  • Fan, C. L., Miller, D. L., and Rodwell, V. W., 1972, Metabolism of basic amino acids in Pseudomonas putida: Transport of lysine, ornithine, and arginine, J. Biol. Chem. 247: 2283–2288.

    CAS  PubMed  Google Scholar 

  • Feiss, D., Belet, M., and Deshusses, J., 1984, Precursor of the myo-inositol-binding protein of a Pseudomonas species, FEBS Lett. 170: 165–168.

    CAS  Google Scholar 

  • G.-Feiss, D., Frey, J., Belet, M., and Deshusses, J., 1985, Cloning of genes involved in myo-inositol transport in a Pseudomonas sp., J. Bacteriol. 162: 324–327.

    Google Scholar 

  • Francis, M. M., and Watanabe, M., 1981, Membrane-associated steroid-binding proteins of Pseudomonas testosteroni, Can. J. Microbiol. 27: 1290–1297.

    PubMed  Google Scholar 

  • Francis, M. M., and Watanabe, M., 1982, Partial purification and characterization of a membrane-associated steroid-binding protein from Pseudomonas testosteroni, Can. J. Biochem. 60: 798–803.

    CAS  PubMed  Google Scholar 

  • Francis, M. M., and Watanabe, M., 1983, Purification and characterization of a membraneassociated testosterone-binding protein from Pseudomonas testosteroni, Can. J. Biochem. Cell Biol. 61: 307–312.

    CAS  PubMed  Google Scholar 

  • Francis, M. M., Kowalsky, N., and Watanabe, M., 1985, Extraction of a steroid transport system from Pseudomonas testosteroni membranes and incorporation into synthetic liposomes, J. Steroid Biochem. 23: 523–528.

    CAS  PubMed  Google Scholar 

  • Guerinot, M. L., 1994, Microbial iron transport, Ann. Rev. Microbiol. 48: 743–772.

    CAS  Google Scholar 

  • Guymon, L. F., and Eagon, R. G., 1974, Transport of glucose, gluconate, and methyl α-D-glucoside by Pseudomonas aeruginosa, J. Bacteriol. 117:1261–1269.

    CAS  PubMed  Google Scholar 

  • Hancock, R. E. W, Poole, K., and Benz, R., 1982, Outer membrane protein P of Pseudomonas aeruginosa: Regulation by phosphate deficiency and formation of small anionspecific channels in lipid bilayer membranes, J. Bacteriol. 150: 730–738.

    CAS  PubMed  Google Scholar 

  • Harold, F. M., 1972, Conservation and transformation of energy by bacterial membranes, Bacteriol. Rev. 36: 172–230.

    CAS  PubMed  Google Scholar 

  • Harwood, C. S., Nichols, N. N., Kim, M.-K., Ditty, J. L., and Parales, R. E., 1994, Identification of the pcaRKF gene cluster from Pseudomonas putida: Involvement in chemotaxis, biodégradation, and transport of 4-hydroxybenzoate, J. Bacteriol. 176: 6479–6488.

    CAS  PubMed  Google Scholar 

  • Hernandez, D., and Rowe, J. J., 1988, Oxygen inhibition of nitrate uptake is a general regulatory mechanism in nitrate respiration, J. Biol. Chem. 263: 7937–7939.

    CAS  PubMed  Google Scholar 

  • Hernandez, D., Dias, F. M., and Rowe, J. J., 1991, Nitrate transport and its regulation by O2 in Pseudomonas aeruginosa, Arch. Biochem. Biophys. 286: 159–163.

    CAS  PubMed  Google Scholar 

  • Higgins, S. J., and Mandelstam, J., 1972, Evidence for induced synthesis of an active transport factor for mandelate in Pseudomonas putida, Biochem. J. 126: 917–922.

    CAS  PubMed  Google Scholar 

  • Hong, J.-H., Hunt, A. G., Masters, P. S., and Lieberman, M. A., 1979, Requirement of acetyl phosphate for the binding protein-dependent transport systems in Escherichia coli, Proc. Natl. Acad. Sci. USA 76: 1213–1217.

    CAS  PubMed  Google Scholar 

  • Hoshino, T., 1979, Transport systems for branched-chain amino acids in Pseudomonas aeruginosa, J. Bacteriol. 139: 705–712.

    CAS  PubMed  Google Scholar 

  • Hoshino, T., and Kagayama, M., 1979, Sodium-dependent transport of L-leucine in membrane vesicles prepared from Pseudomonas aeruginosa, J. Bacteriol. 137: 73–81.

    CAS  PubMed  Google Scholar 

  • Hoshino, T., and Kagayama, M., 1980, Purification and properties of a binding protein for branched-chain amino acids in Pseudomonas aeruginosa, J. Bacteriol. 141: 1055–1063.

    CAS  PubMed  Google Scholar 

  • Hoshino, T., and Kagayama, M., 1982, Mutational separation of transport systems for branched-chain amino acids in Pseudomonas aeruginosa, J. Bacteriol. 151: 620–628.

    CAS  PubMed  Google Scholar 

  • Hoshino, T., and Kose, K., 1989, Cloning and nucleotide sequence of braC, the structural gene for the leucine-, isoleucine-, and valine-binding protein of Pseudomonas aeruginosa PAO, J. Bacteriol. 171: 6300–6306.

    CAS  PubMed  Google Scholar 

  • Hoshino, T., and Kose, K., 1990a, Cloning, nucleotide sequences, and identification of the products of the Pseudomonas aeruginosa PAO bra genes, which encode the high-affinity branched-chain amino acid transport system, J. Bacteriol. 172: 5531–5539.

    CAS  PubMed  Google Scholar 

  • Hoshino, T., and Kose, K., 1990b, Genetic analysis of the Pseudomonas aeruginosa PAO high-affinity branched-chain amino acid transport system by use of plasmids carrying the bra genes, J. Bacteriol. 172: 5540–5543.

    CAS  PubMed  Google Scholar 

  • Hoshino, T., and Nishio, K., 1982, Isolation and characterization of a Pseudomonas aeruginosa PAO mutant defective in the structural gene for the LIVAT-binding protein, J. Bacteriol. 151: 729–736.

    CAS  PubMed  Google Scholar 

  • Hoshino, T., Tsuda, M., Iino, T., Nishio, K., and Kagayama, M., 1983, Genetic mapping of bra genes affecting branched-chain amino acid transport in Pseudomonas aeruginosa, J. Bacteriol. 153: 1272–1281.

    CAS  PubMed  Google Scholar 

  • Hoshino, T., Kose, K., and Uratani, Y., 1990, Cloning and nucleotide sequence of the gene braB coding for the sodium-coupled branched-chain amino acid carrier in Pseudomonas aeruginosa PAO, Mol. Gen. Genet. 220: 461–467.

    CAS  PubMed  Google Scholar 

  • Hoshino, T., Kose-Terai, K., and Uratani, Y., 1991, Isolation of the braZ gene encoding the carrier for a novel branched-chain amino acid transport system in Pseudomonas aeruginosa PAO, J. Bacteriol. 173: 1855–1861.

    CAS  PubMed  Google Scholar 

  • Hoshino, T., Kose-Terai, K., and Sato, K., 1992, Solubilization and reconstitution of the Pseudomonas aeruginosa high-affinity branched-chain amino acid transport system, J. Biol. Chem. 267: 21313–21318.

    CAS  PubMed  Google Scholar 

  • Kaback, H. R., 1983, The lac carrier protein in Escherichia coli, J. Membr. Biol. 76: 95–112.

    CAS  PubMed  Google Scholar 

  • Karimian, M., and Ornston, L. N., 1981, Participation of the β-ketoadipate transport system in chemotaxis, J. Gen. Microbiol. 124: 25–28.

    CAS  PubMed  Google Scholar 

  • Kay, W. W., and Gronlund, A. F., 1969, Proline transport by Pseudomonas aeruginosa, Biochim. Biophys. Acta 193: 444–455.

    CAS  PubMed  Google Scholar 

  • Kay, W. W., and Gronlund, A. F., 1971, Transport of aromatic amino acids by Pseudomonas aeruginosa, J. Bacteriol. 105: 1039–1046.

    CAS  PubMed  Google Scholar 

  • Konings, W. N., Pooleman, B., and Driessen, A. J. M., 1989, Bioenergetics and solute transport in Lactococci, CRC Crit. Rev. Microbiol. 16: 419–476.

    CAS  Google Scholar 

  • Kowalchuk, G. A., Hartnett, G. B., Benson, A., Houghton, J. E., Ngai, K.-L., and Ornston, L. N., 1994, Contrasting patterns of evolutionary divergence within the Acinetobactor calcoaceticus pea operon, Gene 146: 23–30.

    CAS  PubMed  Google Scholar 

  • Kristjansson, J. K., Walter, B., and Hollocher, T. C, 1978, Respiration-dependent proton translocation and the transport of nitrate and nitrite in Paracoccus denitrificans and other denitrifying bacteria, Biochemistry 17: 5014–5019.

    CAS  PubMed  Google Scholar 

  • Laakso, S., 1976, The relationship between methionine uptake and demethiolation in a methionine-utilizing mutant of Pseudomonads fluorescens UK1, J. Gen. Microbiol. 95: 391–394.

    CAS  Google Scholar 

  • Lacoste, A.-M., Cassaigne, A., and Neuzil, E., 1981, Transport of inorganic phosphate in Pseudomonas aeruginosa, Curr. Microbiol. 6: 115–120.

    CAS  Google Scholar 

  • Lefebvre, Y. A., Lefebvre, D. D., Schulz, R., Groman, E. V., and Watanabe, M., 1979, The effects of specific inhibitors and an antiserum of 3β-and 17β-hydroxysteroid dehydrogenase on steroid uptake in Pseudomonas testosteroni, J. Steroid Biochem. 10: 519–522.

    CAS  PubMed  Google Scholar 

  • Lessie, T. G., and Phibbs, P. V., Jr., 1984, Alternative pathways of carbohydrate utilization in Pseudomonas, Ann. Rev. Microbiol. 38: 359–387.

    CAS  Google Scholar 

  • Luthi, E., Bauer, H., Gamper, M., Brunner, F., Villeval, D., Mercenier, A., and Haas, D., 1990, The arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa contains an additional gene, arcD, encoding a membrane protein, Gene 87: 37–43.

    CAS  PubMed  Google Scholar 

  • Mantsala, P., Laakso, S., and Nurmikko, V., 1974, Observations on methionine transport in Pseudomonas fluorescens UK1, J. Gen. Microbiol. 84: 19–27.

    CAS  PubMed  Google Scholar 

  • Marger, M. D., and Saier, M. H., Jr., 1993, A major superfamily of transmembrane facilitators that catabolize uniport, symport, and antiport, Trends Biochem. Sci. 18: 13–19.

    CAS  PubMed  Google Scholar 

  • Matsubara, K., Ohnishi, K., and Kiritani, K., 1992, Nucleotide sequences and characterization of liv genes encoding components of the high-affinity branched-chain amino acid transport system in Salmonella typhimurium, J. Biochem. 112: 93–101.

    CAS  PubMed  Google Scholar 

  • Meagher, R. B., McCorkle, G. M., Ornston, M. K., and Ornston, L. N., 1972, Inducible uptake system for β-carboxy-cis, cis-muconate in a permeability mutant of Pseudomonas putida, J. Bacteriol. 111: 465–473.

    CAS  PubMed  Google Scholar 

  • Meile, L., Soldati, L., and Leisinger, T., 1982, Regulation of proline catabolism in Pseudomonas aeruginosa PAO, Arch. Microbiol. 132: 189–193.

    CAS  PubMed  Google Scholar 

  • Midgley, M., and Dawes, E. A., 1973, The regulation of transport of glucose and methyl α-glucoside in Pseudomonas aeruginosa, Biochem. J. 132: 141–154.

    CAS  PubMed  Google Scholar 

  • Miller, D. L., and Rodwell, V. W., 1971, Metabolism of basic amino acids in Pseudomonas putida, J. Biol. Chem. 246: 1765–1771.

    CAS  PubMed  Google Scholar 

  • Montie, T. C, and Montie, D. B., 1979, Methionine transport in Pseudomonas aeruginosa, Can. J. Microbiol. 25: 1103–1107.

    CAS  PubMed  Google Scholar 

  • Mukkada, A. J., Long, G. L., and Romano, A. H., 1973, The uptake of 2-deoxy-D-glucose by Pseudomonas aeruginosa and its regulation, Biochem. J. 132: 155–162.

    CAS  PubMed  Google Scholar 

  • Neu, H. C., Heppel, L. A., 1965, The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts, J. Biol. Chem. 240: 3685–3692.

    CAS  PubMed  Google Scholar 

  • Ohnishi, K., Hasegawa, A., Matsubara, K., Date, T., Okada, T., and Kiritani, K., 1988, Cloning and nucleotide sequence of the brnQ gene, the structural gene for a membrane-associated component of the LIV-II transport system for branched-chain amino acids in Salmonella typhimurium, Jpn. J. Genet. 63: 343–357.

    CAS  PubMed  Google Scholar 

  • Ohta, N., Galsworthy, P. R., and Pardee, A. B., 1971, Genetics of sulfate transport by Salmonella typhimurium, J. Bacteriol. 105: 1053–1062.

    CAS  Google Scholar 

  • Ohtake, H., Cervantes, C., and Silver, S., 1987, Decreased chromate uptake in Pseudomonas fluorescens carrying a chromate resistance plasmid, J. Bacteriol. 169: 3853–3856.

    CAS  PubMed  Google Scholar 

  • Ondrako, J. M., and Ornston, L. N., 1980, Biological distribution and physiological role of the β-ketoadipate transport system, J. Gen. Microbiol. 120: 199–209.

    CAS  PubMed  Google Scholar 

  • Ornston, L. N., and Parke, D., 1976, Properties of an inducible uptake system for β-ketoadipate in Pseudomonas putida, J. Bacteriol. 125: 475–488.

    CAS  PubMed  Google Scholar 

  • Parke, D., and Ornston, L. N., 1976, Constitutive synthesis of enzymes of the protocatechuate pathway and of the β-ketoadipate uptake system in mutant strains of Pseudomonas putida, J. Bacteriol. 126: 272–281.

    CAS  PubMed  Google Scholar 

  • Peck, H. D., Jr., 1961, Enzymatic basis for assimilatory and dissimilatory sulfate reduction, J. Bacteriol. 82: 933–939.

    CAS  PubMed  Google Scholar 

  • Phibbs, P. V., Jr., and Eagon, R. G., 1970, Transport and phosphorylation of glucose, fructose, and mannitol by Pseudomonas aeruginosa, Arch. Biochem. Biophys. 138: 470–482.

    CAS  PubMed  Google Scholar 

  • Phibbs, P. V., Jr., McCowen, S. M., Feary, T. W., and Blevins, W. T, 1978, Mannitol and fructose catabolic pathways of Pseudomonas aeruginosa carbohydrate-negative mutants and pleiotropic effects of certain enzyme deficiencies, J. Bacteriol. 133: 717–728.

    CAS  PubMed  Google Scholar 

  • Plate, C. A., 1979, Requirement for membrane potential in active transport of glutamine by Escherichia coli, J. Bacteriol. 137: 221–225.

    CAS  PubMed  Google Scholar 

  • Poole, K., and Hancock, R. E. W., 1983, Secretion of alkaline phosphatase and phospho-lipase C is specific and does not involve an increase in outer membrane permeability, FEMS Microbiol. Lett. 16: 25–29.

    CAS  Google Scholar 

  • Poole, K., and Hancock, R. E. W., 1984, Phosphate transport in Pseudomonas aeruginosa: Involvement of a periplasmic phosphate-binding protein, Eur. J. Biochem. 144: 607–612.

    CAS  PubMed  Google Scholar 

  • Postma, P. W., Lengeler, J. W., and Jacobsen, G. R., 1993, Phosphoenolpyruvate:carbohydrate phosphotransferase systems in bacteria, Microbiol Rev. 57: 543–594.

    CAS  PubMed  Google Scholar 

  • Reber, G., Belet, M., and Deshusses, J., 1977, Myo-inositol transport system in Pseudomonas putida, J. Bacteriol. 131:872–875.

    CAS  Google Scholar 

  • Richarme, G., 1985, Possible involvement of lipoic acid in binding protein-dependent transport systems in Escherichia coli, J. Bacteriol. 162: 286–293.

    CAS  PubMed  Google Scholar 

  • Roehl, R. A., and Phibbs, P. V., Jr., 1982, Characterization and genetic mapping of fructose phosphotransferase mutations in Pseudomonas aeruginosa, J. Bacteriol. 149: 897–905.

    CAS  PubMed  Google Scholar 

  • Rosenberg, H., 1987, Phosphate transport in prokaryotes, in: Ion Transport in Prokaryotes (B. P. Rosen and S. Silver, eds.), Academic Press, San Diego, pp. 205–248.

    Google Scholar 

  • Rosenfeld, H., and Feigelson, P., 1969, Product inhibition in Pseudomonas acidovorans of a permease system which transports L-tryptophan, J. Bacteriol. 97: 705–714.

    CAS  PubMed  Google Scholar 

  • Rottenberg, H., 1975, The measurement of transmembrane electrochemical proton gradients, J. Bioenerg. 7: 61–74.

    CAS  PubMed  Google Scholar 

  • Sage, A., Temple, L., Christie, G. B., and Phibbs, P. V., Jr., 1993, Nucleotide sequence and expression of the glucose catabolism and transport genes in Pseudomonas aeruginosa, Program and Book of Abstracts for 4th International Symposium on Pseudomonas, August 1993, p. 105.

    Google Scholar 

  • Sawyer, M. H., Baumann, P., Baumann, L., Berman, S. M., Canovas, J. L., and Berman, R. H., 1977, Pathways of D-fructose catabolism in species of Pseudomonas, Arch. Microbiol. 112:49–55.

    CAS  PubMed  Google Scholar 

  • Schook, L. B., and Berk, R. S., 1978, Nutritional studies with Pseudomonas aeruginosa grown on inorganic sulfur sources, J. Bacteriol. 133: 1377–1382.

    CAS  Google Scholar 

  • Sias, S. R., and Ingraham, J. L., 1979, Isolation and analysis of mutants of Pseudomonas aeruginosa unable to assimilate nitrate, Arch. Microbiol. 122: 263–270.

    CAS  PubMed  Google Scholar 

  • Sirko, A., Hryniewicz, M., Hulanicka, D., Bock, A., 1990, Sulfate and thiosulfate transport in Escherichia coli K12: Nucleotide sequence and expression of the cysTWAM gene cluster, J. Bacteriol. 172: 3351–3357.

    CAS  PubMed  Google Scholar 

  • Sly, L. M., Worobec, E. A., Perkins, R. E., and Phibbs, P. V., Jr., 1993, Reconstitution of glucose uptake and chemotaxis in Pseudomonas aeruginosa glucose transport defective mutants, Can. J. Microbiol. 39: 1079–1083.

    CAS  PubMed  Google Scholar 

  • Stanier, R. Y., Palleroni, N. J., and Doudoroff, M., 1966, The aeruobic pseudomonads: A taxonomic study, J. Gen. Microbiol. 43: 149–171.

    Google Scholar 

  • Stinett, J. D., Guymon, L. F., and Eagon, R. G., 1973, A novel technique for the preparation of transport-active membrane vesicles from Pseudomonas aeruginosa: Observations on gluconate transport, Biochem. Biophys. Res. Commun. 52: 284–290.

    Google Scholar 

  • Stinson, M. W., Cohen, M. A., and Merrick, J. M., 1976, Isolation of dicarboxylic acid-and glucose-binding proteins from Pseudomonas aeruginosa, J. Bacteriol. 128: 573–579.

    CAS  PubMed  Google Scholar 

  • Stinson, M. W., Cohen, M. A., and Merrick, J. M., 1977, Purification and properties of the periplasmic glucose-binding protein of Pseudomonas aeruginosa, J. Bacteriol. 131: 672–681.

    CAS  PubMed  Google Scholar 

  • Stouthamer, A. H., 1976, Biochemistry and genetics of nitrate reductase in bacteria, Adv. Microbiol. Physiol. 14: 315–375.

    CAS  Google Scholar 

  • Surin, B. P., Rosenberg, H., and Cox, G. B., 1985, Phosphate-specific transport system of Escherichia coli: Nucleotide sequence and gene-polypeptide relationships, J. Bacteriol. 161: 189–198.

    CAS  PubMed  Google Scholar 

  • Talalay, P., 1965, Enzymatic mechanisms in steroid biochemistry, Ann. Rev. Biochem. 34: 347–380.

    CAS  PubMed  Google Scholar 

  • Temple, L., Cuskey, S. M., Perkins, R. E., Bass, R. C, Morales, N. M., Christie, G. E., Olsen, R. H., and Phibbs, P. V., Jr., 1990, Analysis of cloned structural and regulatory genes for carbohydrate utilization in Pseudomonas aeruginosa PAO, J. Bacteriol. 172: 6396–6402.

    CAS  PubMed  Google Scholar 

  • Thayer, J. R., and Wheelis, M. L., 1976, Characterization of a benzoate permease mutant of Pseudomonas putida, Arch. Microbiol. 110:37–42.

    CAS  PubMed  Google Scholar 

  • Thayer, J. R., and Wheelis, M. L., 1982, Active transport of benzoate in Pseudomonas putida, J. Gen. Microbiol. 128: 1749–1753.

    CAS  Google Scholar 

  • Uratani, Y., 1985, Solubilization and reconstitution of sodium-dependent transport system for branched-chain amino acids from Pseudomonas aeruginosa, J. Biol. Chem. 260: 10023–10026.

    CAS  PubMed  Google Scholar 

  • Uratani, Y., 1992, Immunoaffinity purification and reconstitution of sodium-coupled branched-chain amino acid carrier of Pseudomonas aeruginosa, J. Biol. Chem. 267: 5177–5183.

    CAS  PubMed  Google Scholar 

  • Uratani, Y, and Aiyama, A., 1986, Effect of phospholipid composition on activity of sodium-dependent leucine transport system in Pseudomonas aeruginosa, J. Biol. Chem. 261: 5450–5454.

    CAS  PubMed  Google Scholar 

  • Uratani, Y, and Hoshino, T, 1989, Difference in sodium requirement of branched-chain amino acid carrier between Pseudomonas aeruginosa PAO and PML strains is due to substitution of an amino acid at position 292, J. Biol. Chem. 264: 18944–18950.

    CAS  PubMed  Google Scholar 

  • Uratani, Y, Wakayama, N., and Hoshino, T, 1987, Effect of lipid acyl chain length on activity of sodium-dependent leucine transport system in Pseudomonas aeruginosa, J. Biol. Chem. 262: 16914–16919.

    CAS  PubMed  Google Scholar 

  • Uratani, Y., Tsuchiya, T., Akamatsu, Y., and Hoshino, T., 1989, Na+(Li+)/branched-chain amino acid cotransport in Pseudomonas aeruginosa, J. Membr. Biol. 107: 57–62.

    CAS  PubMed  Google Scholar 

  • Vander Wauben, C., Pierard, A., Kley-Raymann, M., and Haas, D., 1984, Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: Evidence for a four-gene cluster encoding the arginine deiminase pathway, J. Bacteriol. 160: 928–934.

    Google Scholar 

  • Verhoogt, H. J. C., Smit, H., Abee, T., Gamper, M., Driessen, A. J. M., Haas, D., and Konings, W. L., 1992, arcD, the first gene of the arc operon for anaerobic arginine catabolism in Pseudomonas aeruginosa, encodes an arginine-ornithine exchanger, J. Bacteriol. 174: 1568–1573.

    CAS  PubMed  Google Scholar 

  • Watanabe, M., and Po, L., 1974, Testosterone uptake by membrane vesicles of Pseudomonas testosteroni, Biochim. Biophys. Acta 345: 419–429.

    CAS  Google Scholar 

  • Watanabe, M., and Po, L., 1976, Membrane bound 3β-and 17β-hydroxysteroid dehydrogenase and its role in steroid transport in membrane vesicles of Pseudomonas testosteroni, J. Steroid Biochem. 7: 171–175.

    CAS  PubMed  Google Scholar 

  • Watanabe, M., Phillips, K., and Watanabe, H., 1973, Induction of steroid-binding activity in Pseudomonas testosteroni, J. Steroid. Biochem. 4: 622–631.

    Google Scholar 

  • Watanabe, M., Sy, L. P., Hunt, D., and Lefebvre, Y., 1979, Binding of steroids by a partially purified periplasmic protein from Pseudomonas testosteroni, J. Steroid Biochem. 10: 207–213.

    CAS  PubMed  Google Scholar 

  • Weill-Thevenet, N. J., Hermann, M., and Vandecasteele, J.-P., 1979, Lysine transport systems in Pseudomonas in relation to their physiological function, J. Gen. Microbiol. 111: 263–269.

    CAS  Google Scholar 

  • Whiting, P. H., Midgley, M., and Dawes, E. A., 1976, The regulation of transport of glucose, gluconate, and 2-oxogluconate and of glucose catabolism in Pseudomonas aeruginosa, Biochem. J. 154: 659–668.

    CAS  PubMed  Google Scholar 

  • Wright, J. K., Seckler, R., and Overath, P., 1986, Molecular aspects of suganion cotransport, Ann. Rev. Biochem. 55: 225–248.

    CAS  PubMed  Google Scholar 

  • Yamato, I., and Anraku, Y., 1977, Transport of sugars and amino acids in bacteria. XVIII. Properties of isoleucine carrier in the cytoplasmic membrane vesicles of Escherichia coli, J. Biochem. 81: 1517–1523.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoshino, T. (1998). Transport Systems in Pseudomonas . In: Montie, T.C. (eds) Pseudomonas. Biotechnology Handbooks, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0120-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0120-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0122-4

  • Online ISBN: 978-1-4899-0120-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics