Skip to main content

Carbohydrate Catabolism in Pseudomonas aeruginosa

  • Chapter

Part of the book series: Biotechnology Handbooks ((BTHA,volume 10))

Abstract

The goal of this review is to update the reader on recent data elucidating the physiology and genetics of glycolytic pathways in P. aeruginosa, the most thoroughly investigated member of the pseudomonads. Glycolytic pathways in this organism have several unique features. Lacking phosphofructokinase, P. aeruginosa metabolizes three- and six-carbon sugars via a central cycle which includes the Entner-Doudoroff pathway (EDP) enzymes, rather than utilizing the fermentation pathway of Embden-Meyerhoff-Parnas (EMP) (Entner and Doudoroff, 1952; Kersters and DeLey, 1968). Another unique physiological feature is that a product of the EDP, glyceraldehyde 3-phosphate, is largely recycled through the central cycle, rather than continuing to pyuvate via the lower EMP pathway (Banerjee, 1989; Phibbs, 1988). Thus, the latter enzymes in P. aeruginosa seem to serve gluconeogenic rather than the more usual catabolic functions in other organisms. Whereas the metabolism of glucose is preferred by Escherichia coli, P. aeruginosa utilizes succinate and other tricarboxylic acid cycle intermediates before glucose (Anderson and Wood, 1969; Belvins et al., 1975; Hylemon and Phibbs, 1972; Midgley and Dawes, 1973; and Tiwari and Campbell, 1969). In addition, this organism lacks an oxidative hexose monophosphate pathway (Phibbs, 1988).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, S. L., and Phillips, A. T., 1990, Nucleotide sequence of the gene encoding the repressor for the histidine utilization genes of Pseudomonas putida, J. Bacteriol. 172:5470–5476.

    CAS  PubMed  Google Scholar 

  • Anderson, R. L., and Wood, W. R., 1969, Carbohydrate metabolism in microorganisms, Ann. Rev. Microbiol. 23:539–578.

    CAS  Google Scholar 

  • Austin, D., and Larson, T. J., 1991, Nucleotide sequence of the glpD gene encoding aerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli K-12. J. Bacteriol. 173:101–107.

    CAS  PubMed  Google Scholar 

  • Banerjee, P. C, 1989, Fructose-bisphosphatase-deficient mutants of mucoid Pseudomonas aeruginosa, Folia Microbiologica 34:81–86.

    CAS  PubMed  Google Scholar 

  • Banerjee, P. C, Vanags, R. I., Chakrabarty, A. M., and Maitra, P. K., 1983, Alginic acid synthesis in Pseudomonas aeruginosa mutants defective in carbohydrate metabolism, J. Bacteriol. 155:238–245.

    CAS  PubMed  Google Scholar 

  • Banerjee, P. C, Vanags, R. I., Chakrabarty, A. M., and Maitra, P. K., 1985, Fructose, 1,6-bisphosphate aldolase activity is essential for synthesis of alginate from glucose by Pseudomonas aeruginosa, J. Bacteriol. 161:458–460.

    CAS  PubMed  Google Scholar 

  • Banerjee, P. C., Darzins, A., and Maitra, P. K., 1987, Gluconeogenic mutations in Pseudomonas aeruginosa genetic linkage between fructose-bisphosphate aldolase and phosphoglycerate kinase, J. Gen. Microbiol. 133:1099–1108.

    CAS  PubMed  Google Scholar 

  • Baumann, P., and Baumann, L., 1975, Catabolism of D-fructose and D-ribose by Pseudomonas doudoroffii. I. Physiological studies and mutant analysis. Arch. Microbiol. 105(3):225–240.

    CAS  PubMed  Google Scholar 

  • Blevins, W. T., Feary, T. W., and Phibbs, P. V., Jr., 1975, 6-Phosphogluconate dehydratase deficiency in pleiotropic carbohydrate negative mutant strains of Pseudomonas aeruginosa, J. Bacteriol. 121:942–949.

    CAS  PubMed  Google Scholar 

  • Calligeros, J. E., Matsumoto, H., Gates, J. E., and Phibbs, P. V., Jr., 1996, Characterization and genetic mapping of phosphoglucoisomerase mutations in Pseudomonas aeruginosa, Curr Microbiol. 33:347–351.

    CAS  PubMed  Google Scholar 

  • Colby, J., Dalton, H., and Whittenbury, R. 1979, Biological and biochemical aspects of microbial growth on 1 carbon compounds, Ann. Rev. Microbiol. 33:481–518.

    CAS  Google Scholar 

  • Collier, D. N., Hager, P. W., and Phibbs, P. V., Jr., 1996, Catabolite repression control in the Pseudomonads, Res. Microbiol. 147:551–561.

    CAS  PubMed  Google Scholar 

  • Cuskey, S. M., and Phibbs, P. V., Jr., 1985, Chromosomal mapping of mutations affecting glycerol and glucose catabolism in Pseudomonas aeruginosa PAO, J. Bacteriol. 162:872–880.

    CAS  PubMed  Google Scholar 

  • Cuskey, S. M., Wolff, J. A., Phibbs, P. V., Jr., and Olsen, R. H., 1985, Cloning of Genes specifying carbohydrate catabolism in Pseudomonas aeruginosa and Pseudomonas putida, J. Bacteriol. 162:865–871.

    CAS  PubMed  Google Scholar 

  • Darzins, A., and Casabadan, M. J., 1989, In vivo cloning of Pseudomonas aeruginosa genes with mini-D3112 transposable bacteriophage, J. Bacteriol. 171:3917–3925.

    CAS  PubMed  Google Scholar 

  • Delic-Attree, I., Toussaint, B., and Vignais, P. M., 1995, Cloning and sequence analysis of the genes coding from the integration host factor (IHF) and HU proteins of Pseudomonas aeruginosa, Gene 154:61–64.

    CAS  PubMed  Google Scholar 

  • Duline, J. A., and Frank Jzn, J., 1981, Quino proteins, a novel class of dehydrogenases, Trends Biochem. Sci. 6:278–280.

    Google Scholar 

  • Duine, J. A., and Jongejan, J. A., 1989, Quinoproteins, enzymes with pyrrolo-quinoline quinone as cofactor. Annu. Rev. Biochem. 58:403–426.

    CAS  PubMed  Google Scholar 

  • Durham, D. R., and Phibbs, P. V., Jr., 1982, Fractionation and characterization of the phosphoenolpyruvate: fructose 1-phosphotransferase system from Pseudomonas aeruginosa, J. Bacteriol. 149:534–541.

    CAS  PubMed  Google Scholar 

  • Eagon, R. G., 1971, 2-Deoxyglucose transportation via passive diffusion and its oxidation, not phosphorylation, to 2-deoxygluconic acid by Pseudomonas aeruginosa, Can. J. Biochem. 49:606–613.

    CAS  PubMed  Google Scholar 

  • Eisenberg, R. C, and Phibbs, P. V., Jr., 1982, Characterization of an inducible mannitolbinding protein from Pseudomonas aeruginosa, Curr. Microbiol. 7:229–234.

    CAS  Google Scholar 

  • Entner, N., and Doudoroff, M., 1952, Glucose and gluconic acid oxidation of Pseudomonas saccharophila, J. Biol. Chem. 196:853–862.

    CAS  PubMed  Google Scholar 

  • Fraenkel, D. G., 1986, Mutants in glycolysis, An. Rev. Biochem. 55:317–337.

    CAS  Google Scholar 

  • Goosen, N., and van de Putte, P., 1995, The regulation of transcription initiation by integration host factor, Mol. Microbiol. 16:1–7.

    CAS  PubMed  Google Scholar 

  • Goosen, N., Vermasas, D. A. M., and van de Putte, P., 1987, Cloning of the genes involved in synthesis of coenzyme pyrrolo-quinoline-quinone from Acenetobacter calcoaceticus, J. Bacteriol. 169:303–307.

    CAS  PubMed  Google Scholar 

  • Gottschalk, G., Bender, R., Heath, H. E., and Gaudy, E. T, 1978, Relationship between catabolism of glycerol and metabolism of hexosephosphate derivatives by Pseudomonas aeruginosa, J. Bacteriol. 136:638–646.

    Google Scholar 

  • Govan, J. R. W., 1988, Alginate biosynthesis and other unusual characteristics associated with the pathogenesis of Pseudomonas aeruginosa in cystic fibrosis, in: Bacterial Infections of Respiratory and Gastrointestinal Mucosae, (E. Griffiths, W. Donachie, and J. Stephen, eds.), IRL Press, Oxford, pp. 67–96.

    Google Scholar 

  • Hager, P. W., Covert-Rinaldi, A., Wallace, W. H., and Phibbs, P. V., Jr., 1997, Cloning and sequence analysis of the gluconate operon of Pseudomonas aeruginosa PAO, Abstracts of the VI International Congress of Pseudomonas: Molecular Biology and Biotechnology, pg. 71.

    Google Scholar 

  • Hancock, R. E., and Carey, A. M., 1980, Protein D1, a glucose-inducible, pore-forming protein from the outer membrane of Pseudomonas aeruginosa, FEMS Microbiol. Lett. 8:105–109.

    CAS  Google Scholar 

  • Hochster, R. M., and Katzneleon, H., 1958, On the mechanism of glucose-6-phosphate oxidation in cell-free extracts of Xanthomonas phaseoli (XP8), Can. J. Biochem. Physiol. 36:669–689.

    CAS  PubMed  Google Scholar 

  • Holloway, B. W., and Morgan, A. F., 1986, Genome organization in Pseudomonas, Annu. Rev. Microbiol. 40:79–105.

    CAS  PubMed  Google Scholar 

  • Holloway, B. W., Krishnapillai, V., and Morgan, A. F., 1979, Chromosomal genetics of Pseudomonas, Microbiol. Rev. 43:73–102.

    CAS  PubMed  Google Scholar 

  • Holloway, B. H., Römling, U., and Tümmler, B., 1994, Genomic mapping of Pseudomonas aeruginosa PAO, Microbiol. 140:2907–2929.

    CAS  Google Scholar 

  • Hu, L., Allison, S. L., and Phillips, A. T, 1989, Identification of multiple repressor recognition sites in the hut system of Pseudomonas putida, J. Bacteriol. 171:4189–4195.

    CAS  PubMed  Google Scholar 

  • Huang, H., and Hancock, R. E. W., 1993, Genetic definition of the substrate selectivity of outer membrane porin protein OprD of Pseudomonas aeruginosa, J. Bacteriol. 175:7793–7800.

    CAS  PubMed  Google Scholar 

  • Huang, H., Siehnel, R. J., Bellido, F., Rawling, E., and Hancock, R. E., 1992, Analysis of two gene regions involved in the expression of the imipenem-specific, outer membrane porin protein OprD of Pseudomonas aeruginosa, FEMS Microbiol. Lett. 76:267–273.

    CAS  PubMed  Google Scholar 

  • Hurley, J. H., Faber, H. R., Worthylake, D., Meadow, N. D., Roseman, S., Pettigrew, D. W., and Remington, S. J., 1993, Structure of the regulatory complex of Escherichia coli IIIGlc with glycerol kinase, Science 259:673–677.

    CAS  PubMed  Google Scholar 

  • Hunt, J. C, and Phibbs, P. V., Jr., 1981, Failure of Pseudomonas aeruginosa to form membrane-associated glucose dehydrogenase activity during anaerobic growth with nitrate, Biochem. Biophys. Res. Commun. 102:1393–1399.

    CAS  PubMed  Google Scholar 

  • Hunt, J. C, and Phibbs, P. V., Jr., 1983, Regulation of alternate peripheral pathways of glucose catabolism during aerobic and anaerobic growth of Pseudomonas aeruginosa, J. Bacteriol. 154:793–804.

    CAS  PubMed  Google Scholar 

  • Hylemon, P. B., and Phibbs, P. V., Jr., 1972, Independent regulation of hexose catabolizing enzymes and glucose transport activity in Pseudomonas aeruginosa, Biochem. Biophys. Res. Commun. 48:1041–1048.

    CAS  PubMed  Google Scholar 

  • Karpel, R. L., and Burchard, A. C, 1981, A basic isozyme of yeast Saccharomyces cerevisiae glyceraldehyde, 3-phosphate dehydrogenase with nucleic acid helix destabilizing activity, Biochim. Biophys. Acta. 64:256–267.

    Google Scholar 

  • Kersters, K., and DeLey, J., 1968, The occurrence of the Entner—Doudoroff pathway in bacteria, Antonie van Leewenhoek 34:393–408.

    CAS  Google Scholar 

  • Leidigh, B. J., and Wheelis, M. L., 1973, The clustering on the Pseudomonas putida chromosome of genes specifying dissimilatory functions. J. Mol. Evol. 2(4):235–242.

    CAS  PubMed  Google Scholar 

  • Lessie, T. G., and Phibbs, P. V., Jr., 1984, Alternative pathways of carbohydrate utilization in pseudomonads, Ann. Rev. Microbiol. 38:359–387.

    CAS  Google Scholar 

  • Liao, X., Charlebois, I., Ouellet, C., Morency, M.-J., Dewar, K., Lightfoot, J., Foster, J., Siehnel, R., Schweizer, H. P., Lam, J., Hancock, R. E. W., and Levesque, R. C, 1996, Physical mapping of 32 genetic markers on the Pseudomonas aeruginosa PAO1 chromosome, Microbiology 142:79–86.

    CAS  PubMed  Google Scholar 

  • Ma, J. F., Hager, P. W., Howell, M. L., Phebbs, P. V., and Hassett, D. J., 1998, Cloning and characterization of the Pseudomonas aeruginosa zwf gene encoding glucose-6-phosphate dehydrogenase, an enzyme important in resistance to methyl viologen (paraquat). J. Bacteriol. 180(7): 1741–1749.

    CAS  PubMed  Google Scholar 

  • MacAlister, L., and Holland, M. J., 1985, Differential expression of the three yeast glyceraldehyde, 3-phosphate dehydrogenase genes, J. Biol. Chem. 280:15013–15018.

    Google Scholar 

  • MacGregor, C. H., Wolff, J. A., Arora, S. K., and Phibbs, P. V., Jr., 1991, Cloning a catabolite repression control CRC gene from Pseudomonas aeruginosa, expression of the gene in Escherichia coli, and identification of the gene product in Pseudomonas aeruginosa. Bacteriol. 173:7204–7212.

    CAS  Google Scholar 

  • MacGregor, C. H., Arora, S. K., Hager, P. W., Dail, M. B., and Phibbs, P. V., Jr., 1996, The nucleotide sequence of the Pseudomonas aeruginosa pyrE-crc-rph region and the purification of the ere gene product, J. Bacteriol. 178:5627–5635.

    CAS  PubMed  Google Scholar 

  • Martin, D. W., Holloway, B. W., and Deretic, V., 1993, Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor, J. Bacteriol. 175:1153–1164.

    CAS  PubMed  Google Scholar 

  • Matsushita, K., Shinagawa, E., Adachi, O., and Ameyama, M., 1979, Membrane-bound D-gluconate dehydrogenase from Pseudomonas aeruginosa. Purification and structure of cytochrome-binding form, J. Biochem. 85:1173–1181.

    CAS  PubMed  Google Scholar 

  • Matsushita, K., Shinagawa, E., Adachi, O., and Ameyama, M., 1979, D-gluconate dehydrogenase from bacteria, 2-keto-D-gluconate yielding, membrane bound, Methods Enzymol. 89:187–193.

    Google Scholar 

  • Matsushita, K., Shinagawa, E., Adachi, O., and Ameyama, M., 1979, Membrane-bound D-gluconate dehydrogenase from Pseudomonas aeruginosa. Its kinetic properties and a reconstitution of gluconate oxidase, J. Biochem. 86:249–256.

    CAS  PubMed  Google Scholar 

  • Matsushita, K., Yamada, M., Shinagawa, E., Adachi, O., and Ameyama, M., 1980, Membrane-bound respiratory chain of Pseudomonas aeruginosa grown aerobically. J. Bacteriol. 141(1):389–392.

    CAS  PubMed  Google Scholar 

  • May, T. B., Shinabarger, D., Maharaj, R., Kato, J., Chu, L., Devault, J. D., Roychoudthury, S., Zielinkski, N. A., Berry, A., Rothmel, R. K., Misra, T. K., and Chakrabarty, A. M., 1991, Alginate synthesis by Pseudomonas aeruginosa: A key pathogenic factor in chronic pulmonary infections of cystic fibrosis patients, Clin. Microbiol. Rev. 4:191–206.

    CAS  PubMed  Google Scholar 

  • McCowen, S. M., Phibbs, P. V., Jr., and Feary, T. W., 1981, Glycerol catabolism in wild-type and mutant strains of Pseudomonas aeruginosa, Curr. Microbiol. 5:191–196.

    CAS  Google Scholar 

  • McCowen, S. M., Sellers, J. R., and P. V., Phibbs, Jr., 1987, Characterization of fructose, 1,6-diphosphate-insensitive catabolic glycerol kinase of Pseudomonas aeruginosa, Curr. Microbiol. 14:323–327.

    CAS  Google Scholar 

  • Midgley, M., and Dawes, E. A., 1973, The regulation of transport of glucose and methyl alpha glucoside in Pseudomonas aeruginosa, Biochem. J. 132:141–154.

    CAS  PubMed  Google Scholar 

  • Ng, F. M. W., and Dawes, E. A., 1973, Chemostat studies on the regulation of glucose metabolism in Pseudomonas aeruginosa by citrate, Biochem. J. 132:129–140.

    CAS  PubMed  Google Scholar 

  • Nikaido, H., and Saier, M. H., 1992, Transport proteins in bacteria: Common themes in their design, Science 258:936–942.

    CAS  PubMed  Google Scholar 

  • O’Brien, R. W., 1975, Enzymatic analysis of the pathways of glucose catabolism and gluconeogenesis in Pseudomonas citronellosis, Arch. Microbiol. 103:71–76.

    PubMed  Google Scholar 

  • Olsen, R. H., Debusscher, G., and McCombie, W. R., 1982, Development of broad hostrange vectors and gene banks: Self-cloning of the Pseudomonas aeruginosa chromosome, J. Bacteriol. 150:60–69.

    CAS  PubMed  Google Scholar 

  • Parkinson, J. S., 1993, Signal transduction schemes of bacteria, Cell 73:857–871.

    CAS  PubMed  Google Scholar 

  • Parkinson, J. S., and Kofold, E. C, 1992, Communication modules in bacterial signaling proteins, Ann. Rev. Genet. 26:71–112.

    CAS  PubMed  Google Scholar 

  • Perucho, M., Salas, J., and Salas, M. L., 1977, Identification of the mammalian DNA binding protein P-8 as glyceraldehyde 3-phosphate dehydrogenase, Eur. J. Biochem. 81:557–562.

    CAS  PubMed  Google Scholar 

  • Phibbs, P. V., Jr., 1988, Genetic analysis of carbohydrate metabolism in Pseudomonas, in: Microbial Metabolism and the Carbon Cycle, (S. R. Hagedorn, R. S. Hanson, and D. A. Kunz, eds.), Harwood Academic Publishers, New York, pp. 412–436.

    Google Scholar 

  • Phibbs, P. V., Jr., and Eagon, R. G., 1970, Transport and phosphorylation of glucose, fructose, and mannitol by Pseudomonas aeruginosa. Arch. Biochem. Biophys. 138(2): 470–482.

    CAS  PubMed  Google Scholar 

  • Phibbs, P. V., Jr., Feary, T. W., and Blevins, W. T., 1974, Pyruvate carboxylase deficiency in pleiotropic carbohydrate negative mutant strains of Pseudomonas aeruginosa, J. Bacteriol. 118:999–1009.

    CAS  PubMed  Google Scholar 

  • Phibbs, P. V., Jr., McCowen, S. M., Feary, T. W., and Blevins, W. T., 1978, Mannitol and fructose catabolic pathways of Pseudomonas aeruginosa carbohydrate negative mutants and pleiotropic effects of certain enzyme deficiencies, J. Bacteriol. 133:717–728.

    CAS  PubMed  Google Scholar 

  • Phibbs, P. V., Jr., Srivastava, R., Chunfang, Z., and Holloway, B. W., 1987, Expression of the P. aeruginosa mannitol utilization genes in P. putida. Abstr. Ann. Meet. Am. Soc. Microbiol. H-25, p. 143.

    Google Scholar 

  • Phillips, A. T., and Mulfinger, L. M., 1981, Cyclic adenosine 3′,5′-monophosphate levels in Pseudomonas putida and Pseudomonas aeruginosa, J. Bacteriol. 145:1286–1292.

    CAS  PubMed  Google Scholar 

  • Proctor, W. D., Hager, P. W., and Phibbs, P. V., Jr., 1997, Purification and characterization of HexR, a putative repressor protein involved in the regulation of carbohydrate catabolism by Pseudomonas aeruginosa PAO1, Abstracts of the VI International Congress of Pseudomonas: Molecular Biology and Biotechnology, pg. 148.

    Google Scholar 

  • Proctor, W. D., Arora, S., Hager, P., and Phibbs, P. V., Jr., 1997, Integration host factor and the putative repressor protein hexR bind the hexC locus of Pseudomonas aeruginosa, Abstr. Annu. Meet. Am. Soc. Microbiol K-95, 357.

    Google Scholar 

  • Ratnaningsih, E., Dharmsthiti, S., Krishnapillai, V., Morgan, A., Sinclair, M., and Holloway, B. W., 1990, A combined physical and genetic map of Pseudomonas aeruginosa PAO, J. Gen. Microbiol. 136:2351–2357.

    CAS  PubMed  Google Scholar 

  • Rivers, D. B., and Blevins, W. T., 1987, Multiple enzyme forms of glyceraldehyde, 3-phos-phate dehydrogenase in Pseudomonas aeruginosa, J. Gen. Microbiol. 133:3159–3164.

    CAS  PubMed  Google Scholar 

  • Roehl, R. A., and Phibbs, P. V., Jr., 1981, Genetic mapping of mutations in the mannitol catabolic pathway of Pseudomonas aeruginosa, Abstr. Ann. Meet. Am. Soc. Microbiol. K70, 149.

    Google Scholar 

  • Roehl, R. A., and Phibbs, P. V., Jr., 1982, Characterization and genetic mapping of fructose phosphotransferase mutations in Pseudomonas aeruginosa, J. Bacteriol. 149:897–905.

    CAS  PubMed  Google Scholar 

  • Roehl, R. A., Feary, T. W., and Phibbs, P. V., Jr., 1983, Clustering of mutations affecting central pathway enzymes of carbohydrate catabolism in Pseudomonas aeruginosa, J. Bacteriol. 156:1123–1129.

    CAS  PubMed  Google Scholar 

  • Romling, U., Duchene, M., Essar, D. W., Galloway, D., Guidi-Rontani, C., Hill, D., Lazdunski, A., Millet, R. V., Scheifer, K. H., Smith, D. W., Toschka, H. Y., and Tümmler, B., 1992, Localization of alg, opr, phn, 4.5S RNA, 6S RNA, tox, trp, and xcp genes, rrn operons, and the chromosomal origin on the physical genome may of Pseudomonas aeruginosa PAO, J. Bacteriol. 174:327–330.

    CAS  PubMed  Google Scholar 

  • Ryazanov, A. G., 1985, Glyceraldehyde 3-phosphate dehydrogenase is one of the three major RNA-binding proteins of rabbit reticulocytes, FEBS Lett. 182:131–134.

    Google Scholar 

  • Sage, A. E., Proctor, W. D., and Phibbs, P. V., Jr., 1996, A two-component response regulator, gltR, is required for glucose transport activity in Pseudomonas aeruginosa, J. Bacteriol. 178:6064–6066.

    CAS  PubMed  Google Scholar 

  • Sage, A., Temple, L. M., Christie, G. E., and Phibbs, P. V., Jr., 1993, Nucleotide sequence and expression of the glucose catabolism and transport genes in Pseudomonas aeruginosa, Prog. Abstr. Fourth Int. Symp. Pseudomonas: Biotechnology and Molecular biology, 1993, Vancouver, British Columbia, Canada, p. 105.

    Google Scholar 

  • Savrolac, E. G., Taylor, N. F., Benz, R., and Hancock, R. E. W., 1991, Purification of glucose-inducible outer membrane protein OprB of Pseudomonas putida and reconstitution of glucose-specific pores, J. Bacteriol. 173:4970–4976.

    Google Scholar 

  • Sawyer, M. H., Baumann, P., Baumann, L., Berman, S. M., Canovas, J. L., and Berman, R. H., 1977, Pathways of D-fructose catabolism in species of Pseudomonas, Arch. Microbiol. 112(1):49–55.

    CAS  PubMed  Google Scholar 

  • Schweizer, H. P., 1991, The agmR gene, an environmentally responsive gene, complements defective glpR, which encodes the putative activator for glycerol metabolism in Pseudomonas aeruginosa, J. Bacteriol, 173:6798–6806.

    CAS  PubMed  Google Scholar 

  • Schweizer, H. P., 1992, Allelic exchange in Pseudomonas aeruginosa using novel ColEl-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker, Mol Microbiol. 6:1195–1204.

    CAS  PubMed  Google Scholar 

  • Schweizer, H. P., and Hoang, T, 1995, An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa, Gene 158:15–22.

    CAS  PubMed  Google Scholar 

  • Schweizer, H. P., and Po, C. 1994, Cloning and characterization of the sn-glycerol 3-phosphate dehydrogenase structural gene glpD of Pseudomonas aeruginosa, J. Bacteriol. 176:2184–2193.

    CAS  PubMed  Google Scholar 

  • Schweizer, H. P., and Po, C., 1996, Regulation of glycerol metabolism in Pseudomonas aeruginosa: Characterization of the glpR repressor gene, J. Bacterioi. 178:5215–5221.

    CAS  Google Scholar 

  • Schweizer, H. P., Po, C., and Bacic, M. K., 1995, Identification of Pseudomonas aeruginosa glpM, whose gene product is required for efficient alginate biosynthesis from various carbon sources, J. Bacterioi. 177:4801–4804.

    CAS  Google Scholar 

  • Schweizer, H. P., Jump, R., and Po, C., 1997, Structure and gene-polypeptide relationships of the region encoding glycerol diffusion facilitator (glpF) and glycerol kinase (glpK) of Pseudomonas aeruginosa, Microbiol. 143:1287–1297.

    CAS  Google Scholar 

  • Siegel, L. S., and Phibbs, P. V., Jr., 1979, Glycerol and L-α-glycerol 3-phosphate uptake by Pseudomonas aeruginosa, Curr. Microbiol. 2:251–256.

    CAS  Google Scholar 

  • Siegel, L. S., Hylemon, P. B., and Phibbs, P. V., Jr., 1977, Cyclic adenosine 3′,5′-monophosphate levels and activities of adenylate cyclase and cyclic adenosine 3′,5′-monophosphate phosphodiesterase in Pseudomonas and Bacteroids, J. Bacterioi. 129:87–96.

    CAS  Google Scholar 

  • Singh, R., and M. R. Green, 1993, Sequence-specific binding of transfer RNA by glyceraldehyde, 3-phosphate dehydrogenase, Science 259:365–368.

    CAS  PubMed  Google Scholar 

  • Sly, L. M., Worobec, E. A., Perkins, R. E., and Phibbs, P. V., Jr., 1993, Reconstitution of glucose uptake and chemotaxis in Pseudomonas aeruginosa glucose transport defective mutants, Can. J. Microbiol. 39:1079–1083.

    CAS  PubMed  Google Scholar 

  • Stinnet, J. D., and Eagon, R. G., 1973, Comparison of protein content of cytoplasmic membrane and outer cell wall membrane of Pseudomonas aeruginosa, Abstr. Annu. Meet. Am. Soc. Microbiol. 73:182.

    Google Scholar 

  • Stinnett, J. D., Guymon, L. F., and Eagon, R. G., 1973, A novel technique for the preparation of transport-active membrane vesicles from Pseudomonas aeruginosa: Observations on gluconate transport, Biochem. Biophys. Commun. Res. 52:284–290.

    CAS  Google Scholar 

  • Stinson, M. W., Cohen, M. A., and Merrick, J. M., 1977, Purification and properties of the periplasmic glucose-binding protein of Pseudomonas aeruginosa, J. Bacterioi. 131:672–681.

    CAS  Google Scholar 

  • Temple, L., Cuskey, S. M., Perkins, R. E., Bass, R. C, Morales, N. M., Christie, G. E., Olsen, R. H., and Phibbs, P. V., Jr., 1990, Analysis of cloned structural and regulatory genes for carbohydrate utilization in Pseudomonas aeruginosa PAO, J. Bacterioi. 172:6396–6404.

    CAS  Google Scholar 

  • Temple, L., Sage, A. E., Christie, G. E., and Phibbs, P. V., Jr., 1994, Two genes for carbohydrate catabolism are divergently transcribed from a region of DNA containing the hexC locus in Pseudomonas aeruginosa PAO1, J. Bacterioi. 176:4700–4709.

    CAS  Google Scholar 

  • Terry, J. M., Pina, S. E., and Mattingly, S. J., 1991, Environmental conditions which influence mucoid conversion in Pseudomonas aeruginosa PAO1, Infect. Immun. 59:471–477.

    CAS  PubMed  Google Scholar 

  • Terry, J. M., Pina, S. E., and Mattingly, S. J., 1992, Role of energy metabolism in conversion of nonmucoid Pseudomonas aeruginosa to the mucoid phenotype, Infect. Immun. 60:1329–1335.

    CAS  PubMed  Google Scholar 

  • Tiwari, N. P., and Campbell, J. R. R., 1969, Enzymatic control of the metabolic activity of Pseudomonas aeruginosa grown in glucose or succinate medium, Biochim. Biophy. Acta 192:395–401.

    CAS  Google Scholar 

  • Trias, J., Rosenberg, E. Y., and Nikaido, H., 1988, Specificity of the glucose channel formed by protein D1 of Pseudomonas aeruginosa, Biochim. Biophys. Acta 938:493–496.

    CAS  PubMed  Google Scholar 

  • Tsay, S.-S., Brown, K. K., and Gaudy, E. T, 1971, Transport of glycerol by Pseudomonas aeruginosa, J. Bacterioi. 108:82–88.

    CAS  Google Scholar 

  • Van Dijken, J. P., and Quayle, J. R., 1977, Fructose metabolism in four Pseudomonas species. Arch. Microbiol. 114(3):281–286.

    PubMed  Google Scholar 

  • Voegel, R. T., Sweet, G. D., and Boos, W., 1993, Glycerol kinase of Escherichia coli is activated by interaction with the glycerol facilitator, J. Bacteriol. 175:1087–1094.

    Google Scholar 

  • Wallace, W. H., 1989, Genetic and biochemical analysis of gluconate utilization in Pseudomonas aeruginosa PAO1, Ph.D. Thesis, Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, NC.

    Google Scholar 

  • Wallace, W. H., and Phibbs, P. V., Jr., 1988. Chromosomal mapping of mutations affecting the oxidative pathway of glucose catabolism in Pseudomonas aeruginosa PAO, Abstr. Ann. Meet. Am. Soc. Microbiol. K-115, 225.

    Google Scholar 

  • Weissenborn, D. L., and Larson, T. J., 1992, Structure and regulation of the glpFK operon encoding glycerol diffusion facilitator and glycerol kinase of Escherichia coli K-12, J. Biol. Chem. 267:6122–6131.

    CAS  PubMed  Google Scholar 

  • Whiting, P. H., Midgley, M., Dawes, E. A., 1976a, The role of glucose limitation in the regulation of the transport of glucose, gluconate, and 2-oxo-gluconate and of glucose metabolism in Pseudomonas aeruginosa, J. Gen. Microbiol. 92:304–310.

    CAS  PubMed  Google Scholar 

  • Whiting, P. H., Midgley, M., Dawes, E. A., 1976b, The regulation of transport of glucose, gluconate, and 2-oxo-gluconate and of glucose metabolism in Pseudomonas aeruginosa, Biochem. J. 154:659–668.

    CAS  PubMed  Google Scholar 

  • Williams, S. G., Greenwood, J. A., and Jones, C. W, 1994, The effect of nutrient limitation on glycerol uptake and metabolism in continuous cultures of Pseudomonas aeruginosa, Microbiol. 140:2961–2969.

    CAS  Google Scholar 

  • Wolff, J. A., and Phibbs, P. V., Jr., 1986, Construction and use of a small cosmid cloning vector that replicates in Pseudomonas aeruginosa, Plasmid 16:228.

    Google Scholar 

  • Wolff, J. A., MacGregor, C. H., Eisenberg, R. C, and Phibbs, P. V., Jr., 1991, Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO, J. Bacteriol. 173:4700–4706.

    CAS  PubMed  Google Scholar 

  • Wozniak, D. J., and Ohman, D. E., 1993, Involvement of the alginate algT gene and integration host factor in the regulation of the Pseudomonas aeruginosa algB gene, J. Bacteriol. 75:4145–4153.

    Google Scholar 

  • Wylie, J. L., and Worobec, E. A., 1993, Substrate specificity of the high-affinity glucose transport system of Pseudomonas aeruginosa, Can. J. Microb. 39:722–725.

    CAS  Google Scholar 

  • Wylie, J. L., and Worobec, E. A., 1994, Cloning and nucleotide sequence of the Pseudomonas aeruginosa glucose-selective OprB porin gene and distribution of OprB within the family Pseudomonadaceae, Eur.J. Biochem. 22:505–512.

    Google Scholar 

  • Wylie, J. L., and Worobec, E. A., 1995, The OprB porin plays a central role in carbohydrate uptake in Pseudomonas aeruginosa, J. Bacteriol. 17:3021–3026.

    Google Scholar 

  • Wylie, J. L., Bernegger-Egli, C., O’Neil, J. D. J., and Worobec, E. A., 1993. Biophysical characterization of OprB, a glucose-inducible protein of Pseudomonas aeruginosa, J. Bioenerg. Biomembr. 25:547–556.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Temple, L.M., Sage, A.E., Schweizer, H.P., Phibbs, P.V. (1998). Carbohydrate Catabolism in Pseudomonas aeruginosa . In: Montie, T.C. (eds) Pseudomonas. Biotechnology Handbooks, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0120-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0120-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0122-4

  • Online ISBN: 978-1-4899-0120-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics