Skip to main content

The Highest Gas Permeable Membranes of Poly[1-(Trimethylsilyl)-1-Propyne] — Their Gas Permeability and Modification

  • Chapter
Science and Technology of Polymers and Advanced Materials
  • 739 Accesses

Abstract

The industrialization of polymeric membrane processes has grown rapidly since the 1970’s because of an increase in our commercial needs. The development of new membrane materials has been expected produce both high permeability and high selectivity. Masuda’s group reported the excellent permeability for gases in a poly[l-(trimethylsilyl)-l-propyne] (PMSP, PTMSP) membrane in 1983.1 Now, PMSP membrane is the highest gas permeable membrane of all synthetic membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Masuda, E. Isobe, T. Higashimura and K. Takada, Pory[l-(trimethylsilyl)-l-propyne]: a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability, J. Amer. Chem. Soc. 105:7473 (1983).

    Article  CAS  Google Scholar 

  2. K. Takada, K. Matsuya, T. Masuda and T. Higashimura, Gas permeability of polyacetylenes caning substituents, J. Appl. Polyrn. Sci. 30:1605 (1985).

    Article  CAS  Google Scholar 

  3. H. Shimomura, K. Nakanishi, H. Odani, M. Kurata, T. Masuda, T. Higashimura, Permeation of gases in poly[l-(trimethylsilyl)-l-propyne], Kobunshi Ronbunshu 43:141 (1986).

    Article  Google Scholar 

  4. Y. Ichiraku, S.A. Stern and T. Nakagawa, An investigation of the high gas permeability of poly(l-trimethylsilyl-l-propyne), J.Memb. Sci. 34:5 (1987).

    Article  CAS  Google Scholar 

  5. J.F. Kunzler and V. Percec, Living non-conjugated polyacetylenes, Polym. Bull. 18:303 (1987).

    Article  CAS  Google Scholar 

  6. T. Nakagawa, T. Saito, S. Asakawa and Y. Saito, Polyacetylene derivatives as membranes for gas separation, Gas Separation and Purification 2:3 (1988).

    Article  CAS  Google Scholar 

  7. M. Langsam, M. Andard and E.J. Karwachi, Substituted propyne polymers I. chemical surface modification of poly[l-(trimethylsilyl)-propyne] for gas separation membranes. Gas Separation and Purification, 2:162 (1988).

    Article  Google Scholar 

  8. T.N. Bowmer and G.L. Baker, Thermal and radiolytic stability of halogenated derivatives of poly(trimethylsilylpropyne), Polyrn. Prepr. ACS 27(2):218 (1986).

    CAS  Google Scholar 

  9. T. Masuda, Y. Iguchi, B-Z. Tang and T. Higashimura, Diffusion and solution of gases in substituted polyacetylene membranes, Polymer 29:2041 (1988).

    Article  CAS  Google Scholar 

  10. S. Asakawa, Y. Saito, K. Waragai and T. Nakagawa, Composite membrane of poly[l-(trimethylsilyl)-propyne] as a potential oxygen separation membrane, Gas Separation and Purification 3:117 (1989).

    Article  CAS  Google Scholar 

  11. K. Takada, Z. Ryugo and H. Matsuya, Studies on the applications of substituted poly(acetylene). VI. oxygen enriching membranes for poly[l-(trimethylsilyl)-l-propyne]. fabrication of ultra-thin film and its composite membrane, Kobunshi Ronbunshu 46:1 (1989).

    Article  CAS  Google Scholar 

  12. K. Takada, Z. Ryugo and H. Matsuya, Studies on the application of substituted poly(acetylene). VII. oxygen enriching membrane of poly[l-(trimethyleilyl)-l-propyne]. the cause of performance deterioration, Kobunshi Ronbunshu 46:7 (1989).

    Article  CAS  Google Scholar 

  13. K. Takada, Z. Ryugo and H. Matsuya, Studies on application of substituted polyacetylene. VIII. study of oxygen enriching membrane of poly[l-(trimethylsilyl)-l-propyne]. asymmetric membrane and comparison with composite membrane, Kobunshi Ronbunshu 46:63 (1989).

    Article  CAS  Google Scholar 

  14. T. Nakagawa, H. Nakano, K. Enomoto and A. Higuchi, The highest gas permeable membrane of poly[l-(trimethylsilyl)-l-propyne] modified by fillinf polyorganosiloxane AIChE Symposium Series, No. 272 85:1 (1989).

    CAS  Google Scholar 

  15. L.C. Witchey-Lankshmanan, H.B. Hopfenberg and R.T. Chern, Sorption and transport of organic vapors in poly[l-(trimethylsilyl)-l-propyne], J. Memb. Sci. 48:321 (1990).

    Article  Google Scholar 

  16. Y. Nagase, S. Mori, K. Ishihara, K. Matsui and M. Uchikura, Chemical modification of poly(substituted-acetylene). I. synthesis and gas permeability of poly(l-trimethylsilyl-l-propyne)/poly(dimethylsiloxane) graft copolymer, J. Polym. Sci., Polym. Phy. Ed. 29:171 (1991).

    Article  CAS  Google Scholar 

  17. N.A. Platel, A.K. Bokarev, N.E. Kaliuzhnyi, E.G. Litvinova, V.S. Khotimskii, V.V. Volkov and Y.P. Yampol’skii, Gas and vapor permeation and sorption in poly(trimethylsilylpropyne), J. Memb. Sci. 60:13 (1991).

    Article  Google Scholar 

  18. X. Lin, J. Xiao, Y. Yu, J. Chen, G. Zheng and J. Xu, Gas permeabilities of poly(trimethylsilylpropyne) membranes surface modified with CF4 plasma, J. Appl. Polym. Sci. 48:231 (1992).

    Article  Google Scholar 

  19. Y.P. Yampol’skii, V.P. Shantorovich, F.P. Chernyakovskii, A.I. Kornilov and N.A. Platel, Estimation of free volume in poly(trimethylsilyl propyne) by positron annihilation and electrochromism methods, J. Appl. Polym. Sci. 47:85 (1993).

    Article  CAS  Google Scholar 

  20. K.K. Hsu, S. Nataraj, R.M. Thorogood and P.S. Puri, Polytrimethylsilylpropyne membranes by UV-irradiation and further enhancement by subambient temperature, J. Memb. Sci. 79:1 (1993).

    Article  CAS  Google Scholar 

  21. G. Chen, H.J. Griesser and A.W.H. Mau, Gas permeability of poly[l-(trimethylsilyl)-l-propyne] membranes modified by hexafluorobutyl methacrylate, J. Memb. Sci. 82:99 (1993).

    Article  CAS  Google Scholar 

  22. T. Nakagawa, S. Fujisaki, H. Nakano, A. Higuchi, Physical modification of poly(l-trimethylsilyl-l-propyne) membranes for gas separation, J. Memb. Sci. 94:183 (1994).

    Article  CAS  Google Scholar 

  23. V. Stannet, Simple gases (Chap. 2), in: Diffusion in Polymers, J. Crank and G. S. Park, eds., Academic Press, London (1968).

    Google Scholar 

  24. N. Minoura and T. Nakagawa, Permeability of triethylamine vapor through polydimethylsiloxane membrane, Kobunshi Ronbunshu 34:725 (1977).

    Article  CAS  Google Scholar 

  25. K. Nagai and T. Nakagawa, Effects of aging on the gas permeability and solubility in poly(l-trimethylsilyl-l-propyne) membranes synthesized with various catalysts, J. Memb. Sci. 105:261 (1995).

    Article  CAS  Google Scholar 

  26. G. Costa, A. Grosso, M.C. Sachi, P.C. Stein and L. Zetta, A study by solid-state and solution 13C NMR on silicon-containing polyacetylenes, Macromolecules 24:2858 (1991).

    Article  CAS  Google Scholar 

  27. H. Izumikawa, T. Masuda and T. Higashimura, Study on the geometric structure of poly[l-(trimethylsilyl)-l-propyne] by 13C and 29Si NMR spectroscopies, Polm. Bull. 27:193 (1991).

    Article  CAS  Google Scholar 

  28. W.R. Vieth, J.M. Howell and J. Hsieh, Dual-sorption theory, J. Memb. Sci. 1:177 (1976).

    Article  CAS  Google Scholar 

  29. D.R. Paul, Gas sorption and transport in glassy polymers, Ber. Bausenges. Phys. Chem. 83:294 (1979).

    Article  CAS  Google Scholar 

  30. D.R. Paul and W.J. Koros, Effect of patially immobilizing sorption on permeability and the diffusion time lag, J. Polym. Sci., Polym. Phys. Ed. 14:675 (1976).

    Article  CAS  Google Scholar 

  31. D.R. Paul and WJ. Koros, Transient and steady-state permeation in poly(ethylene terephthalate) above and below the glass transition, J. Polym. Sci., Polym. Phys. Ed. 16:2171 (1978).

    Article  Google Scholar 

  32. W.J. Koros, D.R. Paul and G.S. Huvard, Energetics of gas soiption in glassy polymers, Polymer 20:956(1979).

    Article  CAS  Google Scholar 

  33. K. Nagai and T. Nakagawa, Oxidation of poly(l-trimethylsilyl-l-propyne), J. Appl. Polym. Sci. 54:1651 (1994).

    Article  CAS  Google Scholar 

  34. K. Nagai, M. Mori, T. Watanabe and T. Nakagawa, Gas permeation properties of blend and copolymer membranes composed of l-trimethylsilyl-l-propyne and l-phenyl-l-propyne, J. Polym. Sci., Polym. Phys. Ed. 35:119 (1997).

    Article  CAS  Google Scholar 

  35. K. Nagai, A. Higuchi and T. Nakagawa, Gas permeation and sorption in brominated poly(l-trimethylsilyl-l-propyne) membrane, J. App. Polym. Sci. 54:1353 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nakagawa, T. (1998). The Highest Gas Permeable Membranes of Poly[1-(Trimethylsilyl)-1-Propyne] — Their Gas Permeability and Modification. In: Prasad, P.N., Mark, J.E., Kandil, S.H., Kafafi, Z.H. (eds) Science and Technology of Polymers and Advanced Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0112-5_72

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0112-5_72

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0114-9

  • Online ISBN: 978-1-4899-0112-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics