Skip to main content

Synthesis and Processing of Nano-Scale Materials through Chemistry

  • Chapter
Science and Technology of Polymers and Advanced Materials

Abstract

The sol-gel process can be considered as a method for the preparation of non-metallic inorganic materials by a chemical route. This general definition, however, does not match completely the specifics of this process since the sol phase is considered to be indispensable. The preparation of precursors for inorganic materials, for example, ceramics by precipitation processes or chemical vapor reaction to synthesize powders has been known for long times and industrially used widely as, for example, the Bayer process for the production of alumina powders. In order to make this type of processes efficient, the precipitation takes place under thermodynamic conditions, under which no disturbance of nucleation and growth takes place in order to obtain well-defined precipitates easy to be filtered or processed. Another example is the hydrothermal process, for example, developed by Degussa, or the fabrication of zirconia, where the transport mechanisms for crystal growth under elevated pressure and temperature conditions and the formation of thermodynamically stable and well crystallized phases is easier than under low-pressure, low-temperature conditions. If nucleation and growth take place under conditions where the nuclei absorb surface charges, each nucleus grows independently and no aggregation takes place if the surface charges (related to the so-called Zeta-potential) are in the range where the resulting repulsing forces are strong enough to avoid agglomeration. Moreover, if the concentration is off the feet and the resulting concentration of particles in the liquid system is low enough to keep the distances in a range where the Stern’s potential2 does not switch into attraction, colloidal solution can be kept stable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Kriechbaum, P. Kleinschmitt and D. Peukert, in Ceramic Transactions 1A, Ceramic Powder Science. Ed.: Am. Ceram. Society, Westerville/Ohio, USA, 146 (1988).

    Google Scholar 

  2. O. Stern, Z Elektrochem., 508 (1924).

    Google Scholar 

  3. C.J. Brinker and G.W. Scherer, Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing, Academic Press, Boston (1990).

    Google Scholar 

  4. C.J. Brinker, A.J. Hurd, G.C. Frye, K.J. Ward, C. S. Ashley, Sol-gel thin film formation, J. Non-Cryst. Solids 121:294(1990).

    Article  CAS  Google Scholar 

  5. J. Zarzycki, Synthesis of glasses from precursor: bulk and film — a comparison, Proc. of the European Meeting Inorganic Coatings on Glass, P. Picozzi, S. Santucci, P. Boattini, L. Massarelli and V. Scopa (eds.), Soietà Italiana Vetro, L’Aquila, Italy, 149 (1988).

    Google Scholar 

  6. Better Ceramics Through Chemistry V, Mat. Res. Soc. Symp. Proc. Vol. 271, M. J. Hampden-Smith, W. G. Klemperer and C. J. Brinker (eds.), Materials Research Society, Pittsburgh/PA (1992).

    Google Scholar 

  7. Better Ceramics Through Chemistry VI, Mat. Res. Soc. Symp. Proc. Vol. 346, A. K. Cheetham, C. J. Brinker, M. L. Mecartney and C. Sanchez (eds.), Materials Research Society, Pittsburgh/PA (1994).

    Google Scholar 

  8. Better Ceramics Through Chemistry VII, Mat. Res. Soc. Symp. Proc. Vol. 435, B. K. Coltrain, C. Sanchez, D. W. Schaefer and G. L. Wilkes (eds.), Materials Research Society, Pittsburgh/PA (1996).

    Google Scholar 

  9. SPIE Sol-Gel Optics I, J. D. Mackenzie and D. R. Ulrich (eds.), Vol. 1328, SPIE, Bellingham/WA, USA (1990).

    Google Scholar 

  10. SPIE Sol-Gel Optics II, J. D. Mackenzie (ed.), Vol. 1758, SPIE, Bellingham/WA, USA, 1992.

    Google Scholar 

  11. SPIE Sol-Gel Optics III, J. D. Mackenzie (ed.), Vol. 2288, SPIE, Bellingham/WA, USA, 1994.

    Google Scholar 

  12. L. Esquivias, eds., 6th International workshop on glasses and ceramics from gels, 1991, Seville, Spain, in J. Non-Cryst. Solids 147/148 (1992).

    Google Scholar 

  13. J. Livage, ed., 7th International workshop on glasses and ceramics from gels, 1993, Paris, France, in J. Sol-Gel Science and Technology 2:1/3 (1994).

    Google Scholar 

  14. R.M. Almeida, ed., 8th International workshop on glasses and ceramics from gels, 1995, in J. Sol-Gel Science and Technology 8:1/2/3 (1997).

    Google Scholar 

  15. S. Hirano, In-situ control of microstructures of ceramic composites, Funtai Oyobi Funmatsu Yakin 39(12):1093–9 (1992).

    CAS  Google Scholar 

  16. C. Sanchez, Molecular design of hybrid organic-inorganic nano-composites made via sol-gel chemistry, oral presentation in: Organic/Inorganic Polymer Systems, Division of Polymer Chemistry, Inc., American Chemical Society, Napa Valley (1995).

    Google Scholar 

  17. H. Schmidt, Organically modified silicates and ceramics s two-phasic systems: synthesis and processing, J. Sol-Gel Science and Technology 8 No. 1/2/3:557 (1997).

    CAS  Google Scholar 

  18. H. Schmidt, “Relevance of sol-gel methods for synthesis of fine particles”, KONA Powder and Particle, No. 14, 92-103(1996).

    Google Scholar 

  19. R. Naß and H. Schmidt, Formation and properties of chelated alumiumalkoxides, in: Ceramic Powder Processing Sciencs, H. Hausner, G. L. Messing and S. Hirano, eds., Deutsche Keramische Gesellschaft e.V., Köln, 69–76 (1989).

    Google Scholar 

  20. M. Popall, H. Meyer, H. Schmidt and J. Schulz: Inorganic-organic composites (ORMOCERs) as structured layers for microelectronics, Mat. Res. Soc. Symp. Proc. 180:995 (1990).

    Article  CAS  Google Scholar 

  21. H. Schmidt, Application of Ormocers, in: Ceramic Transactions Vol. 55: Sol-Gel Science and Technology, E. Pope, S. Sakka and L. Klein, eds., American Ceramic Society, Westerville/Ohio (1995).

    Google Scholar 

  22. H. Schmidt, R. Kasemann, T. Burkhart, G. Wagner, E. Arpac and E. Geiter, Inorganic-organic hybrid coatings for metal and glass surfaces, in: ACS Symposium Series No. 585: Hybrid Organic-Inorganic Composites, J. E. Mark, C. Y.-C. Lee and P. A. Bianconi, eds., American Chemical Society, Washington (1995).

    Google Scholar 

  23. C. Becker, M. Zahnhausen, H. Krug and H. Schmidt, Characterization of the photopolymerization — kinetics of inorganic-organic nanocomposite materials by photo-DSC, in Ceramics Transactions Vol. 55: Sol-Gel Science and Technology, E. Pope, S. Sakka and L. Klein, eds., American Ceramic Society, Westerville/Ohio (1995).

    Google Scholar 

  24. R. Kasemann and H. Schmidt, “Coatings for mechanical and chemical protection based on organicinorganic sol-gel nanocomposites”, New Journal of Chemistry, Vol. 18, N°. 10, 1117–1123, 1994.

    CAS  Google Scholar 

  25. F. Tiefensee, Ph. D. Thesis, University of Saarland, Saarbrücken (1994).

    Google Scholar 

  26. H. Schmidt, Entwicklung, Mikrostrukturierung und Anwendung von Keramik-polymer-Nanokompositen, in Proc. Werkstoffwoche 1996, Symp. 9, DGM-Informationsgesellschaft mbH (in print).

    Google Scholar 

  27. F. Tiefensee, P. W. Oliveira and H. Schmidt, Organic-inorganic composite materials: optical properties of laser-atterned and protective-coated waveguides, in SPIE Proc. Sol-Gel Optics 1758:448 (1992).

    Article  Google Scholar 

  28. R. Naß, D. Burgard, private communication.

    Google Scholar 

  29. D. Burgard, R. Naß and H. Schmidt, German Offen No. DE 195 15 820 A 1, 04-29-95.

    Google Scholar 

  30. H. Schmidt, R. Naß and D. Burgard, Verfahren zur Herstellung nanoskaliger Oxidteilchen, European Patent No. EP 0 587 672 Bl, 02-14-96.

    Google Scholar 

  31. D. Burgard, Master’s Thesis, University of Saarland, Saarbrücken, Germany (1992).

    Google Scholar 

  32. D. Burgard, C. Kropf, R. Naß and H. Schmidt, Routes to deagglomerated nanopowder by chemical synthesis, in Better Ceramics Through Chemistry VI, Mat. Res. Soc. Symp. Proc. Vol. 346, A. K. Cheetham, C. J. Brinker, M. L. Mecartney and C. Sanchez (eds.), Materials Research Society, Pittsburgh/PA 346:101 (1994).

    Google Scholar 

  33. D. Burgard, R. Naß and H. Schmidt, Synthesis and colloidal processing of nanocrystalline (Y2O3 stabilized) ZrO2 powders by a surface free energy controlled process, in Mat. Res. Soc, Symp. Proc, Pittsburgh/PA, 432:113 (1997).

    Article  CAS  Google Scholar 

  34. D. Burgard, R. Drumm, R. Naß and H. Schmidt, Herstellung und Verarbeitung von nanoskaligem (stabilisiertem) ZrO2 über einen kolloid-chemischen Prozeß, in Proc Werkstoffwoche 1996, Symp. 6, G. Ziegler, H. Cherdron, W. Hermel, J. Hirsch and H. Kolaska (eds.), DGM-Informationsgesellschaft mbH, Frankfurt/M. (1997).

    Google Scholar 

  35. R. Kasemann, H. Schmidt, E. Arpac and V. Gerhard, German Offen No. DE 43 38 361 A 1, 11-10-93.

    Google Scholar 

  36. G. A. Patel, C. Park, S. J. Kubisen, United States Patent No. 5,411,807, 05-02-95.

    Google Scholar 

  37. G. Jonschker, Master’s Thesis, University of Saarland, Saarbrücken (1992).

    Google Scholar 

  38. M. Mennig, G. Jonschker and H. Schmidt, Sol-gel derived thick SiO2 coatings and their thermomechanical and optical properties, in SPIE Proc Sol-Gel Optics 1758:125 (1992).

    Article  CAS  Google Scholar 

  39. M. Mennig, G. Jonschker and H. Schmidt, Verfahren zur Herstellung von Glas mit verbesserter Langzeitstandfähigkeit bei erhöhten Temperaturen, European Patent No. EP 0 642 475 Bl, 06-19-96.

    Google Scholar 

  40. M. Mennig, G. Jonschker, H. Schmidt and P. Kahanek, Flame retardent coatings on glass, Glas-Ingenieur 3:54 (1994).

    Google Scholar 

  41. G. Jonschker, Ph. D. Thesis, University of Saarland, Saarbrücken (in print).

    Google Scholar 

  42. INM brochure “Edelstahl in neuem Gewand”, Saarbrücken (1997).

    Google Scholar 

  43. G. Jonschker, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmidt, H.K. (1998). Synthesis and Processing of Nano-Scale Materials through Chemistry. In: Prasad, P.N., Mark, J.E., Kandil, S.H., Kafafi, Z.H. (eds) Science and Technology of Polymers and Advanced Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0112-5_58

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0112-5_58

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0114-9

  • Online ISBN: 978-1-4899-0112-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics