Skip to main content

Heterochronic Approaches to the Study of Locomotion

  • Chapter

Abstract

Despite the advances that have been made in documenting ontogenetic changes in primate skeletal morphology, relatively little is known about the ontogeny of locomotor behavior. Even less is known about differences among behavioral developmental trajectories of closely related species. The study of evolutionary changes in developmental trajectories is the purview of heterochrony. Heterochrony is generally defined as the study of perturbations and displacements in existing ontogenetic pathways caused by changes in developmental timing and rates. As such, it has been conceived by some researchers (e.g., Gould, 1977; Raff et al., 1990; Zelditch and Fink, 1996; Rice, 1997) as narrowly encompassing only a subset of possible evolutionary shifts in ontogeny, and by others (e.g., McKinney and McNamara, 1991) as all-inclusive. The goal of heterochrony is to understand the proximate causes of differences among adult phenotypes of closely related species. This entails understanding how, through development, morphology and behavior emerge, and how developmental trajectories themselves evolve. Applied to the study of locomotion, it means understanding the evolutionary basis for variation, if any, in the ontogeny of positional behavior, and its relation to the ontogeny of form.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberch P, Gould SJ, Oster GF, and Wake DB (1979) Size and shape in ontogeny and phylogeny. Paleobiology 5:296–317.

    Google Scholar 

  • Cartmill M (1974) Pads and claws in arboreal locomotion. In FA Jenkins (ed.): Primate Locomotion. New York: Academic Press, pp. 45–83.

    Google Scholar 

  • Cheverud J (1982) Relationships among ontogenetic, static, and evolutionary allometry. Am. J. Phys. Anthropol. 59:139–149.

    Article  PubMed  CAS  Google Scholar 

  • Clutton-Brock TH, and Harvey PH (1979) Comparison and adaptation. Proc. R. Soc. Lond. B. 205:547–565.

    Article  PubMed  CAS  Google Scholar 

  • Coppinger L, and Coppinger R (1982) Livestock-quarding dogs that wear sheep’s clothing. Smithsonian 13:65–73.

    Google Scholar 

  • Coppinger R, Glendinning J, Matthay C, Smith C, Sutherland M, and Torop E (1987) Degree of behavioral neoteny differentiating canid polymorphs. Ethology 75:89–108.

    Article  Google Scholar 

  • Demes B, and Gunther MM (1989) Biomechanics and allometric scaling in primate locomotion and morphology. Folia Primatol. 53:125–141.

    Article  PubMed  CAS  Google Scholar 

  • Doran DM (1992) The ontogeny of chimpanzee and pygmy chimpanzee locomotor behavior: A case study of paedomorphism and its behavioral correlates. J. Hum. Evol. 23:139–157.

    Article  Google Scholar 

  • Falsetti AB, and Cole TM III (1992) Relative growth of the postcranial skeleton in callitrichines. J. Hum. Evol. 23:79–92.

    Article  Google Scholar 

  • Feduccia A (1980) The Age of Birds. Cambridge, Ma.: Harvard University Press.

    Google Scholar 

  • Godfrey LR, and Sutherland MR (1995a) Flawed inference: Why size-based tests of heterochronic process do not work. J. Theor. Biol. 172:43–61.

    Article  Google Scholar 

  • Godfrey LR, and Sutherland MR (1995b) What’s growth got to do with it? Process and product in the evolution of ontogeny. J. Hum. Evol. 29:405–431.

    Article  Google Scholar 

  • Godfrey LR, and Sutherland MR (1996) Paradox of peramorphic paedomorphosis: Heterochrony and human evolution. Am. J. Phys. Anthropol. 99:17–42.

    Article  PubMed  CAS  Google Scholar 

  • Gomez AM (1992) Primitive and derived patterns of relative growth among species of Lorisidae. J. Hum. Evol. 23:219–233.

    Article  Google Scholar 

  • Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol. Rev. 41: 587–640.

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ (1975a) Allometry in primates, with emphasis on scaling and the evolution of the brain. In FS Szalay (ed.): Approaches to Primate Paleobiology. Karger: Basel. Contr. Primatol. 5:244-292.

    Google Scholar 

  • Gould SJ (1975b) On the scaling of tooth size in mammals. Am. Zool. 15:351–362.

    Google Scholar 

  • Gould SJ (1977) Ontogeny and Phylogeny. Cambridge, Ma.: Harvard University Press.

    Google Scholar 

  • Hafner JC, and Hafner MS (1988) Heterochrony in rodents. In ML McKinney (ed.): Heterochrony in Evolution: A Multidisciplinary Approach. New York: Plenum Press, pp. 217–235.

    Google Scholar 

  • Huxley JS (1932) Problems of Relative Growth. London: Methuen & Co.

    Google Scholar 

  • Inouye SE (1992) Ontogeny and allometry of African ape manual rays. J. Hum. Evol. 23:107–138.

    Article  Google Scholar 

  • Jungers WL (1984) Aspects of size and scaling in primate biology with special reference to the locomotor skeleton. Yrbk. Phys. Anthropol. 27:73–97.

    Article  Google Scholar 

  • Jungers WL, and Cole MS (1992) Relative growth and shape of the locomotor skeleton in lesser apes. J. Hum. Evol. 23:93–105.

    Article  Google Scholar 

  • Jungers WL, and Fleagle JG (1980) Postnatal growth allometry of the extremities in Cebus albifrons and Cebus apella: A longitudinal and comparative study. Am. J. Phys. Anthropol. 53:471–478.

    Article  PubMed  CAS  Google Scholar 

  • Jungers WL, and Hartman SE (1988) Relative growth of the locomotor skeleton in orang-utans and other large-bodied hominoids. In JH Schwartz (ed.): Orang-utan Biology. Oxford: Oxford University Press, pp. 347–359.

    Google Scholar 

  • Klingenberg CP, and Spence JR (1993) Heterochrony and allometry: Lessons from the water strider genus Limnoporus. Evol. 47:1834–1853.

    Article  Google Scholar 

  • Lande R (1979) Quantitative genetic analysis of multivariate evolution applied to brain:body size allometry. Evol. 33:402–416.

    Article  Google Scholar 

  • Lande R (1982) A quantitative genetic theory of life history evolution. Ecology 63:607–615.

    Article  Google Scholar 

  • Lande R (1985) Genetic and evolutionary aspects of allometry. In WL Jungers (ed.): Size and Scaling in Primate Biology. New York: Plenum Press, pp. 21–32.

    Google Scholar 

  • Lawton MF, and Lawton RO (1986) Heterochrony, deferred breeding, and avian sociality. In RF Johnston (ed.): Current Ornithology, Volume 3. New York: Plenum Press, pp. 187–221.

    Chapter  Google Scholar 

  • Livezey BC (1995) Heterochrony and avian flightlessness. In KJ McNamara (ed.): Evolutionary Change and Heterochrony. New York: John Wiley & Sons, pp. 169–193.

    Google Scholar 

  • McDonald MA, and Smith MH (1994) Behavioral and morphological correlates of heterochrony in Hispaniolan palm-tanagers. The Condor 96:433–446.

    Article  Google Scholar 

  • McKinney ML (1986) Ecological causation of heterochrony: A test and implications for evolutionary theory. Paleobiology 12:282–289.

    Google Scholar 

  • McKinney ML (1988) Classifying heterochrony: Allometry, size, and time. In ML McKinney (ed.): Heterochrony in Evolution, A Multidisciplinary Approach. New York: Plenum Press, pp. 17–34.

    Google Scholar 

  • McKinney ML, and McNamara KJ (1991) Heterochrony: The Evolution of Ontogeny. New York: Plenum Press.

    Book  Google Scholar 

  • McNamara KJ (1983) Progenesis in trilobites. In DEG Briggs and PD Lane (eds.): Trilobites and Other Early Arthropoda: Papers in Honour of Professor H. B. Whittington, FRS. Special Papers in Paleontology 30. London: Paleontological Association, pp. 59–68.

    Google Scholar 

  • Olson SL (1973) Evolution of the rails of the South Atlantic islands (Aves: Rallidae). Smithson. Contr. Zool. 152:1–53.

    Article  Google Scholar 

  • Pilbeam DR, and Gould SJ (1974) Size and scaling in human evolution. Science 186: 892–901.

    Article  PubMed  CAS  Google Scholar 

  • Raff RA, Parr BA, Parks AL, and Wray GA (1990) Heterochrony and other mechanisms of radical evolutionary change in early development. In MH Nitecki (ed.): Evolutionary Innovations. Chicago: University of Chicago, pp. 71–98.

    Google Scholar 

  • Ravosa MJ (1992) Allometry and heterochrony in extant and extinct Malagasy primates. J. Hum. Evol. 23:197–217.

    Article  Google Scholar 

  • Ravosa MJ, Meyers DM, and Glander KE (1993) Relative growth of the limbs and trunk in sifakas: Heterochronic, ecological and functional considerations. Am. J. Phys. Anthropol. 92:499–520.

    Article  PubMed  CAS  Google Scholar 

  • Rice SH (1997) The analysis of ontogenetic trajectories: When a change in size or shape is not heterochrony. Proc. Natl. Acad. Sci. USA 94:907–912.

    Article  PubMed  CAS  Google Scholar 

  • Shea BT (1981) Relative growth of the limbs and trunk in the African apes. Am. J. Phys. Anthropol. 56:179–201.

    Article  PubMed  CAS  Google Scholar 

  • Shea BT (1983) Allometry and heterochrony in the African apes. Am. J. Phys. Anthropol. 62:275–289.

    Article  PubMed  CAS  Google Scholar 

  • Shea BT (1985) Bivariate and multivariate growth allometry: Statistical and biological considerations. J. Zool., Lond. 206:267–290.

    Google Scholar 

  • Shea BT (1986) Scapula form and locomotion in chimpanzee evolution. Am. J. Phys. Anthropol. 70:475–488.

    Article  Google Scholar 

  • Shea BT (1988) Heterochrony in primates. In ML McKinney (ed.): Heterochrony in Evolution. New York: Plenum Press, pp. 237–266.

    Google Scholar 

  • Shea BT (1989) Heterochrony in human evolution: The case for neoteny reconsidered. Yrbk. Phys. Anthropol. 32:69–101.

    Article  Google Scholar 

  • Shea BT (1992) Ontogenetic scaling of skeletal proportions in the talapoin monkey. J. Hum. Evol. 23:283–307.

    Article  Google Scholar 

  • Shea BT, Hammer RE, and Brinster RL (1987) Growth allometry of the organs in giant transgenic mice. Endocrin. 121:1924–1930.

    Article  CAS  Google Scholar 

  • Shea BT, Hammer RE, Brinster RL, and Ravosa MJ (1990) Relative growth of the skull and postcranium in giant transgenic mice. Genet. Res. Camb. 56:21–34.

    Article  CAS  Google Scholar 

  • Smith RJ (1980) Rethinking allometry. J. Theor. Biol. 87:97–111.

    Article  PubMed  CAS  Google Scholar 

  • Smith RJ, and Jungers WL (1997) Body mass in comparative primatology. J. Hum. Evol. 32:523–559.

    Article  PubMed  CAS  Google Scholar 

  • Strasser E (1992) Hindlimb proportions, allometry, and biomechanics in old world monkeys (Primates, Cercopithecidae). Am. J. Phys. Anthropol. 87:187–213.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland MR, and Godfrey LR (in prep.) A multivariate matrix model for heterochronic analysis.

    Google Scholar 

  • Taylor AB (1995) Effects of ontogeny and sexual dimorphism on scapula morphology in the mountain gorilla (Gorilla gorilla beringei). Am. J. Phys. Anthropol. 98:431–445.

    Article  PubMed  CAS  Google Scholar 

  • Taylor AB (1997) Relative growth, ontogeny, and sexual dimorphism in Gorilla (Gorilla gorilla gorilla and G. g. beringei): Evolutionary and ecological considerations. Am. J. Primatol. 43:1–31.

    Article  PubMed  CAS  Google Scholar 

  • Vrba ES, Vainys JR, Gatesy JE, De Salle R, and Wei K-Y (1994) Analysis of paedomorphosis using allometric characters: The example of the Reduncini antelopes. Syst. Biol. 43:92–116.

    Google Scholar 

  • Zelditch ML, and Fink WL (1996) Heterochrony and heterotopy: Stability and innovation in the evolution of form. Paleobiology 22:241–254.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Godfrey, L.R., King, S.J., Sutherland, M.R. (1998). Heterochronic Approaches to the Study of Locomotion. In: Strasser, E., Fleagle, J.G., Rosenberger, A.L., McHenry, H.M. (eds) Primate Locomotion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0092-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0092-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0094-4

  • Online ISBN: 978-1-4899-0092-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics