Skip to main content

Mechanisms by Which Matrix Metalloproteinases May Influence Apoptosis

  • Chapter
  • 76 Accesses

Abstract

Apoptotic cell death plays a critical role in controlling cell number and tissue morphology in embryonic and adult organisms. Recently, there have been significant advances in the understanding of apoptosis at the cellular level. The cloning of diverse genes such as Fas and TNF α ligands/receptors, bcl-2, and ICE family members has lead to an increased knowledge of the signal transduction pathways used by cells to monitor and respond to their environment by inducing apoptosis. Components of the extracellular matrix play an important role in this process. Basement membrane and extracellular matrix contain information critical to the identity of the cell and the context in which it responds to external signals. Disruption of the matrix by the matrix-degrading metalloproteinases can therefore dramatically alter the response of cells to apoptotic signals. It is also interesting to consider that the proteolytic activity of metalloproteinases toward matrix components or other potential substrates provide alternative mechanisms by which degradative enzymes could actively influence apoptotic pathways. This review will discuss two systems in which metalloproteinases have been shown to be involved in apoptotic pathways and discuss potential mechanisms for this effect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anichini, E., Fibbi, G., Pucci, M., Caldini, R., Chevanne, M., and Del Rosso, M. (1994). Production of second messengers following chemotactic and mitogenic urokinase-receptor interaction in human fibroblasts and mouse fibroblasts transfected with human urokinase receptor. Experimental Cell Research 231, 438–448.

    Article  Google Scholar 

  • Baker, S. J., and Reddy, E. P. (1996). Transducers of life and death: TNF receptor superfamily and associated proteins. Oncogene 12, 1–9.

    PubMed  CAS  Google Scholar 

  • Birkedal-Hansen, H., Moore, W. G. I., Bodden, M. K., Windsor, L. J., Birkedal-Hansen, B., DeCarlo, A., and Engler, J. A. (1993). Matrix Metalloproteinases: A Review. Critical Reviews in Oral Biology and Medicine 4, 197–250.

    PubMed  CAS  Google Scholar 

  • Blasi, F., Behrendt, N., Cubellis, M. V., Ellis, V., Lund, L. R., Masucci, M. T., Moller, L. B., Olson, D. P., Pedersen, N., Ploug, M., Ronne, E., and Dano, K. (1990). The urokinase receptor and regulation of cell surface plasminogen activation. Cell Differ.Dev. 32, 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Boudreau, N., Sympson, C. J., Werb, Z., and Bissel, M. J. (1995). Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267, 891–893.

    Article  PubMed  CAS  Google Scholar 

  • Boudreau, N., Werb, Z., and Bissell, M.J. (1996). Suppression of apoptosis by basement membrane requires three-dimensional tissue organization and withdrawal from the cell cycle. Proc. Natl. Acad. Sci. USA 93: 3509–3513.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, P.C., Montgomery, A.M.P., Rosenfeld, M., Reisfeld, R.A., Hu, T., Klier, G., and Cheresh D.A. (1996). Integrin αvβ3 antagonist promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157–1164.

    Article  Google Scholar 

  • Brown, P. D. (1995). Matrix metalloproteinase inhibitors: a novel class of anticancer agents. Advances in Enzyme Regulation 35, 293–301.

    Article  PubMed  CAS  Google Scholar 

  • Gearing, A. J. H., Beckett, P., Christodoulou, M., Churchill, M., Clements, J., Davidson, A. H., Drummond, A. H., Galloway, W. A., Gilbert, R., Gordon, J. L., Leber, T. M., Mangan, M., Miller, K., Nayee, P., Owen, K., Patel, S., Thomas, W., Wells, G., Wood, L. M., and Woolley, K. (1994). Processing of tumour necrosis factor-a precursor by metalloproteinases. Nature 370, 555–557.

    Article  PubMed  CAS  Google Scholar 

  • Hosaka, M., Nagahama, M., Kim, W. S., Watanabe, T., Hatsuzawa, K., Ikemizu, J., Murakami, K., and Nakayama, K. (1991). Arg-X-Lys/Arg-Arg motif as a signal for precursor cleavage catalyzed by furin within the constitutive secretory pathway. Journal of Biological Chemistry 266, 12127–12130.

    PubMed  CAS  Google Scholar 

  • Hulboy, D.L., Rudolph, L.A., and Matrisian, L.M. (1996). Matrix metalloprotienases as mediators of reproductive function. Mol. Hum. Reprod. In Press.

    Google Scholar 

  • Imai, K., Ohuchi, E., Aoki, T., Nomura, H., Fugii, Y., Sato, H., Seiki, M., and Okada, Y. (1996). Membrane-type matrix metalloproteinase lis a gelatinolytic enzyme and is secreted in a complex with tissue inhibitor of metalloproteinases 2. Cancer Res 56, 2707–2710.

    PubMed  CAS  Google Scholar 

  • Jenne, D. E., and Tschopp, J. (1992). Clusterin: the intriguing guises of a widely expressed glycoprotein. Trends Biochem Sci 17, 154–159.

    Article  PubMed  CAS  Google Scholar 

  • Ju, S., Panka, D. J., Cui, H., Ettinger, R., El-Khatib, M., Sherr, D. H., Stanger, B. Z., and Marshak-Rothstein, A. (1995). Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373, 444–48.

    Article  PubMed  CAS  Google Scholar 

  • Kayagaki, N., Kawasaki, A., Ebata, T., Ohmoto, H., Ikeda, S., Inoue, S., Yoshino, K., Okumura, K., and Yagita, H. (1995). Metalloproteinase-mediated release of human Fas ligand. Journal of Experimental Medicine 182, 1777–1783.

    Article  PubMed  CAS  Google Scholar 

  • Lin, C. Q., and Bissell, M. J. (1993). Multi-faceted regulation of cell differentiation by extracellular matrix. Faseb J 7, 737–743.

    PubMed  CAS  Google Scholar 

  • Lund, L. R., Romer, J., Thomasset, N., Solberg, H., Pyke, C., Bissell, M. J., Dano, K., and Werb, Z. (1996). Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and-dependent pathways. Development 122, 181–93.

    PubMed  CAS  Google Scholar 

  • Marcotte, P. A., Kozan, I. M., Dorwin, S. A., and Ryan, J. M. (1992). The matrix metalloproteinase pump-1 catalyzes formation of low molecular weight (pro)urokinase in cultures of normal human kidney cells. Journal of Biological Chemistry 267, 13803–13806.

    PubMed  CAS  Google Scholar 

  • Mason, M. D., Allman, R., and Quibel, M. (1996). Adhesion molecules in melanoma:more than just superglue? J Royal Acad Sci 89, 393–395.

    CAS  Google Scholar 

  • McGeehan, G. M., Becherer, J. D., Bast, R. C., Jr., Boyer, C. M., Champion, B., Connolly, K. M., Conway, J. G., Furdon, P., Karp, S., Kidao, S., McElroy, A. B., Nichols, J., Pryzwansky, K. M., Schoenen, F., Sekut, L., Truesdale, A., Verghese, M., Warner, J., Ways, J. P. (1994). Regulation of tumour necrosis factor-alpha processing by a metalloproteinase inhibitor. Nature 370, 558–561.

    Article  PubMed  CAS  Google Scholar 

  • Meredith, J. E., Fazeli, B., and Schwartz, M. A. (1993). The extracellular matrix as a cell survival factor. Mol.Biol.Cell 4, 953–961.

    PubMed  CAS  Google Scholar 

  • Modlich, U., Kaup, F. J., and Augustin, H. G. (1996). Cyclic angiogenesis and blood vessel regression in the ovary: blood vessel regression during luteolysis involves endothelial cell detachment and vessel occlusion. Lab Invest 74, 771–780.

    PubMed  CAS  Google Scholar 

  • Murphy, G., Crockett, M. I., Stephens, P. E., Smith, B. J., and Docherty, A. J. P. (1987). Stromelysin is an activator of procollagenase — a study with natural and recombinant enzymes. Biochem. J. 248, 265–268.

    PubMed  CAS  Google Scholar 

  • Pajouh, M., Nagle, R., Breathnach, R., Finch, J., Brawer, M., and Bowden, G. (1991). Expression of metalloproteinase genes in human prostate cancer. J Cancer Res Clin Oncol 117, 144–150.

    Article  PubMed  CAS  Google Scholar 

  • Pei, D., and Weiss, S. J. (1995). Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375, 244–247.

    Article  PubMed  CAS  Google Scholar 

  • Powell, W., and Matrisian, L. (1995). Complex roles of matrix metalloproteinases in tumor progression. In Attempts to understand metastasis formation: metastasis related molecules, U. Gunthert and W. Birchmeier, eds. (Berlin: Springer-Verlag), pp. 1–22.

    Google Scholar 

  • Powell, W. C., Dormann, F. E., Jr., Michen, J. M., Matrisian, L. M., Nagle, R. B., and Bowden, G. T. (1996). Matrilysin expression in the involuting rat ventral prostate. The Prostate, 159-168.

    Google Scholar 

  • Puente, X. S., Pendas, A. M., Llano, E., Velasco, G., and Lopez-Otin, C. (1996). Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Research 56, 944–949.

    PubMed  CAS  Google Scholar 

  • Sanchez-Lopez, R., Alexander, C. M., Behrendtsen, O., Breathnach, R., and Werb, Z. (1993). Role of zinc-binding-and hemopexin domain-encoded sequences in the substrate specificity of collagenase and stromelysin-2 as revealed by chimeric proteins. J Biol Chem 268, 7238–7247.

    PubMed  CAS  Google Scholar 

  • Sanchez-Lopez, R., Nicholson, R., Gesnel, M. C., Matrisian, L. M., and Breathnach, R. (1988). Structure-function relationships in the collagenase family member transin. J Biol Chem 263, 11892–11899.

    PubMed  CAS  Google Scholar 

  • Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E., and Seiki, M. (1994). A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370, 61–64.

    Article  PubMed  CAS  Google Scholar 

  • Sato, H., Kinoshita, T., Takino, T., Nakayama, K., and Seiki, M. (1996). Activation of a recombinant membrane type 1-metalloproteinase (MT1-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2. FEBS Letters 393, 101–104.

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Hermann, R., Bursch, W., Kraupp-Grasl, B., Oberhammer, F., and Wagner, A. (1992). Programmed cell death and its protective role with particular reference to apoptosis. Toxicology Letters. 64–65 Spec No, 569–574.

    Article  PubMed  Google Scholar 

  • Seiki, M. (1995). Membrane type-matrix metalloproteinase and tumor invasion. In Attempts to understand metastasis formation: metastasis related molecules, U. Gunthert and W. Birchmeier, eds. (Berlin: Springer-Verlag), pp. 23–32.

    Google Scholar 

  • Sensibar, J. A., Sutkowski, D. M., Raffo, A., Buttyan, R., Griswold, M. D., Sylvester, S. R., Kozlowski, J. M., and Lee, C. (1995). Prevention of cell death induced by tumor necrosis factor alpha in LNCaP cells by overexpression of sulfated glycoprotein-2 (clusterin). Cancer Res 55, 2431–2437.

    PubMed  CAS  Google Scholar 

  • Sympson, C. J., Alexander, C. M., Chin, J. R., Werb, Z., and Bissell, M. J. (1993). Transgenic expression of stromelysin from the WAP promoter alters branching morphogenesis during mammary gland development and results in precocious expression of milk genes. J. Cell Biol. 125:681–693.

    Article  Google Scholar 

  • Takino, T., Sato, H., Shinagawa, A., and Seiki, M. (1995). Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. J. Biol. Chem 270, 23013–23020.

    Article  PubMed  CAS  Google Scholar 

  • Will, H., and Hinzmann, B. (1995). cDNA sequence and mRNA tissue distribution of a novel human matrix metalloproteinase with a potential transmembrane segment. Eur. J. Biochem. 231, 602–608.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C., and Matrisian, L. (1996). Matrilysin: an epithelial matrix metalloproteinase with potentially novel functions. International Journal of Biochemistry and Cell Biology 28:123–136.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C. L., Heppner, K. J., Labosky, P. A., Hogan, B. L. M., and Matrisian, L. M. (1997). Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc. Natl. Acad. Sci. USA. In Press.

    Google Scholar 

  • Witty, J. P., Wright, J. H., and Matrisian, L. M. (1995a). Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-l in transgenic mice induces unscheduled alveolar development. Molecular Biology of the Cell 6, 1287–303.

    PubMed  CAS  Google Scholar 

  • Witty, J. P., Lempka, T., Coffey, R. J., Jr., and Matrisian, L. M. (1995b). Decreased tumor formation in 7,12-dimethylbenzanthracene-treated stromelysin-l transgenic mice is associated with alterations in mammary epithelial cell apoptosis. Cancer Research 55, 1401–1406.

    PubMed  CAS  Google Scholar 

  • Woessner, J., and Taplin, C. (1988). Purification and properties of a small latent matrix metalloproteinase of the rat uterus. J Biol Chem 263, 16918–16925.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Powell, W.C., Matrisian, L.M. (1997). Mechanisms by Which Matrix Metalloproteinases May Influence Apoptosis. In: Shi, YB., Shi, Y., Xu, Y., Scott, D.W. (eds) Programmed Cell Death. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0072-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0072-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0074-6

  • Online ISBN: 978-1-4899-0072-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics