Skip to main content

Adaptation to Ionizing Radiation in Mammalian Cells

  • Chapter
Stress-Inducible Processes in Higher Eukaryotic Cells

Abstract

The concept of an ionizing radiation-induced increase in resistance against the effects of a subsequent exposure is an accepted and reasonably well-understood process in both prokaryotes (Walker, 1984, 1985) and nonmammalian eukaryotes (Calkins, 1967; Boreham et al., 1990, 1991; Boreham and Mitchel, 1991, 1993, 1994; Mitchel and Morrison, 1982, 1984, 1987; Koval, 1986, 1988). Such processes however, have been more difficult to demonstrate in mammalian cells, where their existence and/or significance have been very controversial (Olivieri et al., 1984; Olivieri and Bosi, 1990; Wiencke et al., 1987, Wilson, 1989; Wojcik et al., 1992a,b; Wolff, 1992 a,b). This lack of general acceptance, while reflecting the lack of volume of the data as well as the variability noted above and a lack of direct evidence of an influence on whole animal risk, also reflects the fact that the concept challenges long entrenched and widely held beliefs and practices, both scientific and public, on which all radiation protection programs and cancer risk estimates are based. Consequently, demonstration of the existence and quantification of the significance of adaptation to radiation in mammalian cells has, potentially, large social and economic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azzam, E. I., de Toledo, S. M., Raaphorst, G. P. and Mitchel, R. E. J., 1992, Radiation-induced radioresistance in a normal human skin fibroblast cell line, in: Low Dose Irradiation and Biological Defense Mechanisms ( T. Sugahara, L. A. Sagan, T. Aoyama, eds.), Elsevier, Amsterdam, pp. 291–294.

    Google Scholar 

  • Azzam, E. I., Raaphorst, G. P., and Mitchel, R. E. J., 1994a, Radiation-induced adaptive response for protection against micronucleus formation and neoplastic transformation in C3H 10T1/2 mouse embryo cells, Radiat. Res. 138: S28 - S31.

    Article  PubMed  CAS  Google Scholar 

  • Azzam, E. I., de Toledo, S. M., Raaphorst, G. P., and Mitchel, R. E. J., 1994b, Réponse adaptative au rayonnement ionisant des fibroblastes de peau humaine Augmentation de la vitesse de réparation de l’ADN et variations de l’expression des génes, J. Chim. Phys. Phys. Chim. Biol. 91: 931–936.

    CAS  Google Scholar 

  • Azzam, E. I., de Toledo, S. M., Raaphorst, G. P., and Mitchel, R. E. J., 1996, Low-dose ionizing radiation decreases the frequency of neoplastic transformation to a level below the spontaneous rate in C3H 10T’ cells, Radiat. Res. 146: 369–373.

    Article  PubMed  CAS  Google Scholar 

  • Boreham, D. R., and Mitchel, R. E. J., 1991, DNA lesions that signal the induction of radioresistance and DNA repair in yeast, Radiat. Res. 128: 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Boreham, D. R, and Mitchel, R. E. J., 1993, DNA repair in Chlamydomonas reinhardtii induced by heat shock and gamma radiation, Radiat. Res. 135: 365–371.

    Article  PubMed  CAS  Google Scholar 

  • Boreham, D. R., and Mitchel, R. E. J., 1994, Regulation of heat and radiation stress responses in yeast by hsp-104, Radiat. Res. 137: 190–195.

    Article  PubMed  CAS  Google Scholar 

  • Boreham, D. R., Trivedi, A., Weinberger, P. and Mitchel, R. E. J.,1990, The involvement of topoisomerases and DNA polymerase I in the mechanism of induced thermal and radiation resistance in yeast, Radiat. Res. 123: 203–212.

    Google Scholar 

  • Boreham, D. R., Trivedi, A., and Mitchel, R. E. J., 1991, Radiation and stress response in Saccharomyces cerevisiae, in: Molecular Biology of Yeast in Relation to Biotechnology ( R. Prasad, ed.), Omega Scientific, New Delhi, India, pp. 295–314.

    Google Scholar 

  • Boreham, D. R., Walker, J.-A., Mayes, S. R, Greiner, K., Mitchel, R. E. J., and Lucas, J. N., 1994, Mild hyperthermia-induced modification of radiation induced chromosomal aberrations. A comparison of micronuclei and translocations, Proceedings of the 42nd Annual Meeting of the Radiation Research Society, Abstract P03–51, p. 119.

    Google Scholar 

  • Boreham, D. R., Mayes, S. R., Miller, S., Morrison, D. P., and Mitchel, R. E. J., 1996, Heat induced thermal tolerance and radiation resistance to apoptosis in human lymphocytes, Proceedings of the 44th Annual Meeting of the Radiation Research Society, Abstract P19–328, p. 156.

    Google Scholar 

  • Calkins, J., 1967, An unusual form of response in x-irradiated protozoa and a hypothesis as to its origin, Int. J. Radiat. Biol. 4: 297–301.

    Article  Google Scholar 

  • Cregan, S. P., Boreham, D. R., Walker, J.-A., Brown, D. L., and Mitchel, R. E. J., 1994, Modification of radiation-induced apoptosis in radiation or hyperthermiaadapted human lymphocytes, Biochem. Cell Biol. 72: 475–482.

    Article  PubMed  CAS  Google Scholar 

  • de Toledo, S. M., Azzam, E. I., Gasmann, M. K., and Mitchel, R. E. J., 1995, Use of semi-quantitative reverse transcription-polymerase chain reaction to study gene expression in normal skin fibroblasts following low dose-rate irradiation, Int. J. Radiat. Biol. 67: 135–142.

    Article  PubMed  Google Scholar 

  • Doffing, J.-A., Boreham, D. R., Brown, D. L., Raaphorst, G. P., and Mitchel, R. E. J., 1997, Rearrangement of human cell homologous chromosome domains in response to ionizing radiation, Int. J. Radiat. Biol. 72: 303–311.

    Article  Google Scholar 

  • Dulic, V., Kaufmann, W. K., Wilson, S. J., Tisty, T. D., Lees, E., Wade Harper, J., Elledge, S. J., and Reed, S. I., 1994, P53-dependent inhibition of cyclindependent kinase activities in human fibroblasts during radiation-induced G1 arrest, Cell 76: 1013–1023.

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Smith, E. C., and Rutherford, T. R., 1991, Fanconi anemia: Constitutional aplastic-anemia, Semin. Hematol. 28: 104–112.

    PubMed  CAS  Google Scholar 

  • ICRP, 1991, 1990 Recommendations of the International Commission on Radiological Protection, Publication 60, Annals of the ICRP, 21, Pergamon Press, London.

    Google Scholar 

  • Kastan, M. B., Zhan, Q., El-Deity, W. S., Carrier, F., Jacks, T., Walsh, W. V., Plunkett, B. S., Volgestein, B., and Fornace A. J., Jr., 1992, A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxiatelangiectasia, Cell 71: 587–597.

    Article  PubMed  CAS  Google Scholar 

  • Koval, T. M., 1986, Inducible repair of ionizing radiation damage in higher eukaryotic cells, Mutat. Res. 173: 291–293.

    Article  PubMed  CAS  Google Scholar 

  • Koval, T. M., 1988, Enhanced recovery from ionizing radiation damage in a lepidopteran insect cell line, Radiat. Res. 115: 413–420.

    Article  PubMed  CAS  Google Scholar 

  • Lambin, P., Marples, B., Malaise, E. P., Fertil, B., and Joiner, M. C., 1993, Hypersensitivity of a human tumour cell line to very low radiation doses, Int. J. Radiat. Biol. 63: 639–650.

    CAS  Google Scholar 

  • Lambin, P., Fertil, B., Malaise, E. P., and Joiner, M. C., 1994, Multiphasic survival curves for cells of human tumor cell lines: Induced repair or hypersensitive subpopulation? Radiat. Res. 138: S32 - S36.

    Article  PubMed  CAS  Google Scholar 

  • Lehnert, S., and Chow, T. Y. K., 1996, Low doses of ionizing radiation induce nuclear activity catalyzing double strand homologous DNA recombination, Proceedings of the 44th Annual Meeting of the Radiation Research Society, Abstract P14–262, p. 140.

    Google Scholar 

  • Marples, B., and Joiner, M. C., 1993, The response of Chinese hamster V79 cells to low radiation doses: evidence of enhanced sensitivity of the whole population, Radiat. Res. 133: 41–51.

    Article  PubMed  CAS  Google Scholar 

  • Marples, B., Joiner, M. C., and Skov, K., 1994, The effect of oxygen on low-dose hypersensitivity and increased radioresistance in Chinese hamster V79–379A cells, Radiat. Res. 138: S17 - S20.

    Article  PubMed  CAS  Google Scholar 

  • Mitchel, R. E. J., 1995, Mechanisms for the adaptive response in irradiated mammalian cells, Radiat. Res. 141: 117–118.

    Google Scholar 

  • Mitchel, R. E. J., and Morrison, D. P., 1982, Heat shock induction of ionizing radiation resistance in Saccharomyces cerevisiae. Transient changes in growth cycle distribution and recombinational ability, Radiat. Res. 92: 182–187.

    Article  PubMed  CAS  Google Scholar 

  • Mitchel, R. E. J., and Morrison, D. P., 1984, An oxygen effect for gamma-radiation induction of radiation resistance in yeast, Radiat. Res. 100: 205–210.

    Article  PubMed  CAS  Google Scholar 

  • Mitchel, R. E. J., and Morrison, D. P., 1987, Inducible DNA-repair systems in yeast: Competition for lesions, Mutat. Res. 183: 149–159.

    CAS  Google Scholar 

  • Mushel, R. J., Zhang, H. B., Iliakis G, and McKenna, W. G., 1991, Cyclin B expression in HeLa cells during the G2 block induced by ionizing radiation, Cancer Res. 51: 5113–5117.

    Google Scholar 

  • Nelson, W. G., and Kastan, M. B., 1994, DNA strand breaks: The DNA template alterations that trigger p53-dependent DNA damage response pathways, Mol. Cell. Biol. 14: 1815–1823.

    PubMed  CAS  Google Scholar 

  • Olivieri, G., and Bosi, A., 1990, Possible causes of variability of the adaptive response in human lymphocytes, in: Chromosomal Aberrations: Basic and Applied Aspects ( G. Obe andA.T. Natarajan, eds.), Springer-Verlag, Berlin, pp. 130–139.

    Chapter  Google Scholar 

  • Olivieri, G., Bodycote, J., and Wolff, S., 1984, Adaptive response of human lympho- cytes to low concentration of radioactive thymidine, Science 23: 594–597.

    Article  Google Scholar 

  • Pagano, M., Pepperkok, P., Verde, F., Ansorge, W., and Draetta, G., 1992, CyclinA is required at two points in the human cell cycle, EMBO J. 11: 961–971.

    Google Scholar 

  • Papathanasiou, M. A., Kerr, N. C. K., Robbins, J. H., McBride, O. W., Alamo, I., Jr., Barret, S. F., Hickson, I. D., and Fornace, A. J., Jr., 1991, Induction by ionizing radiation of the GADD45 gene in cultured human cells: Lack of mediation by protein kinase C, Moi. Cell. Biol. 11: 1009–1016.

    CAS  Google Scholar 

  • Resnitzky, D., Gossen, M., Bujard, H., and Reed, S. I., 1994, Acceleration of the G1/S transition by expression of cyclins D1 and E using an inducible system, MoL Cell. Biol. 14: 1669–1679.

    CAS  Google Scholar 

  • Shadley, J. D., and Wiencke, J. K., 1989, Induction of the adaptive response by x-rays is dependent on radiation intensity, Int. J. Radiat. Biol. 56: 107–118.

    Article  PubMed  CAS  Google Scholar 

  • Sherr, C. J., 1993, Mammalian G1 cyclins, Cell 73: 1059–1065.

    Article  PubMed  CAS  Google Scholar 

  • Spadinger, I., Marples, B., Mathews, J., and Skov, K., 1994, Can colony size be used to detect low-dose effects? Radiat. Res. 138: S21 - S24.

    Article  PubMed  CAS  Google Scholar 

  • Stevnsner, T., and Bohr, V., 1993, Studies on the role of topoisomerases in general, gene-and strand-specific DNA repair, Carcinogenesis 14: 1841–1850.

    Article  PubMed  CAS  Google Scholar 

  • Strathdee, C. A., and Buchwald, M., 1992, Molecular and cellular biology of Fanconi anemia, Am. J. Pediatr. Hematol. Oncol. 14: 177–185.

    Article  PubMed  CAS  Google Scholar 

  • Strathdee, C. A., Gavish, H., Shannon, W. R, and Buchwald, M., 1992, Cloning of cDNAs for Fanconi’s anaemia by functional complementation, Nature 356: 763–767.

    Article  PubMed  CAS  Google Scholar 

  • Walker, G. C., 1984, Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli, Microbioi. Rey. 48: 60–93.

    CAS  Google Scholar 

  • Walker, G. C., 1985, Inducible DNA repair systems, Annu. Rey. Biochem. 54: 425–457.

    Article  CAS  Google Scholar 

  • Wiencke, J. K., Afzal, V., Olivieri, G., and Wolff, S., 1986, Evidence that the [3H1thymidine-induced adaptive response of human lymphocytes to subsequent doses of X-rays involves the induction of a chromosomal repair mechanism, Mutagenesis 1: 375–380.

    Article  PubMed  CAS  Google Scholar 

  • Wiencke, J. K., Shadley, J. D., Kelsey, K. T., Kronenberg, A., and Little, J. B., 1987, Failure of high intensity X-ray treatments or densely ionizing fast neutrons to induce the adaptive response in human lymphocytes, in: Proceedings of the 8th International Congress of Radiation Research (E. M. Fielden, J. F. Fowler, J. H. Hendry, and D. Scott, eds.), Taylor Francis, London, Vol. 1, p. 212.

    Google Scholar 

  • Wilson, A., 1989, Meeting report: The effects of small doses of radiation, Int. J. Radiat. Biol. 56: 203–206.

    Google Scholar 

  • Woessner, R. D., Mattern, M. R, Mirabelli, C. K., Johnson, R. K., and Drake, F. H., 1991, Proliferation-and cell cycle-dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cells, Cell Growth Differ 2: 209–214.

    PubMed  CAS  Google Scholar 

  • Wojcik, A., and Tuschl, H., 1990, Indications of an adaptive response in C57BL mice pre-exposed in vivo to low doses of ionizing radiation, Mutat. Res. 243: 67–73.

    Article  PubMed  CAS  Google Scholar 

  • Wojcik, A., Bonk, K., Müller, W.-U., Streffer, C., Weissenborn, U., and Obe, G., 1992a, Absence of adaptive response to low doses of X-rays in preimplantation embryos and spleen lymphocytes of an inbred mouse strain as compared to human peripheral lymphocytes: A cytogenetic study, Int. J. Racifiat. Biol. 62: 177–186.

    Article  CAS  Google Scholar 

  • Wojcik, A., Bonk, K., Müller, W.-U., and Streffer, C., 1992b, Indications of strain specificity for the induction of adaptive response to ionizing radiation in mice, in: Low Dose Irradiation and Biological Defense Mechanisms ( T. Sugahara, L. A. Sagan, and T. Aoyama, eds.), Elsevier, Amsterdam, pp. 311–314.

    Google Scholar 

  • Wolff, S., 1992a, Failla Memorial Lecture: Is radiation all bad? The search for adaptation, Radiat. Res. 131: 117–123.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, S., 1992b, Low dose exposure and the induction of adaptation, in: Low Dose Irradiation and Biological Defense Mechanisms ( T. Sugahara, L. A. Sagan, and T. Aoyama, eds.), Elsevier, Amsterdam, pp. 21–28.

    Google Scholar 

  • Wolff, S., Afzal, V., Wiencke, J. K., Olivieri, G. and Micheali, A., 1988, Human lymphocytes exposed to low doses of ionizing radiations become refractory to high doses of radiation as well as chemical mutagens that induce double-strand breaks in DNA, Int. J. Radiat. Biol. 53: 39–48.

    CAS  Google Scholar 

  • Wolff, S., Wiencke, J. K., Afzal, V., Youngblom, J., and Cortés, F., 1989, The adaptive response of human lymphocytes to very low doses of ionizing radiation: A case of induced chromosomal repair with the induction of specific proteins, in: Low Dose Radiation: Biological Bases of Risk Assessment ( K. F. Baverstock and J. W. Stather, eds.), Taylor Francis, London, pp. 446–454.

    Google Scholar 

  • Wouters, B. G., and Skarsgard, L. D., 1994, The response of a human tumor cell line to low radiation doses: Evidence for enhanced sensitivity, Radiat. Res. 138: S76 - S80.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y., and Beach, D., 1991, Population explosion in the cyclin family, Curr. Biol. 1: 362–364.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y., Greenstock, C. L., Trivedi, A., and Mitchel, R. E. J., 1996, Occupational levels of radiation exposure induce surface expression of interleukin-2 receptors in stimulated human peripheral blood lymphocytes, Radiat. Environ. Biophys. 35: 89–93.

    Article  PubMed  CAS  Google Scholar 

  • Zhan, Q., Carrier, F., and Fornace, A. J., Jr., 1993, Induction of cellular p53 activity by DNA-damaging agents and growth arrest, Mol. Cell. Biol. 13: 4242–4250.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mitchel, R.E.J., Azzam, E.I., De Toledo, S.M. (1997). Adaptation to Ionizing Radiation in Mammalian Cells. In: Koval, T.M. (eds) Stress-Inducible Processes in Higher Eukaryotic Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0069-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0069-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0071-5

  • Online ISBN: 978-1-4899-0069-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics