Skip to main content

Stress Resistance in Lepidopteran Insect Cells

  • Chapter
  • 60 Accesses

Abstract

Insects represent the most populous group of animals on Earth. Over 75% (over 932,000 out of approximately 1,250,000) of all described animal species are insects. Insects occupy and play an important role in virtually every terrestrial ecosystem and many aquatic ecosystems. From worldwide economic and human health perspectives, approximately 20% of all crops are lost because of insects and one in six individuals has an insect-borne illness. Clearly, from both prevalence and relevance points of view, insects merit our attention and study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berg, G. J., and LaChance, L. E., 1976, Dominant lethal mutations in insects with holokinetic chromosomes: Irradiation of pink bollworm sperm, Ann. EntomoL Soc. Am. 69: 971–976.

    Google Scholar 

  • Bianchi, N. O., and Lopez-Larraza, D. M., 1991, DNA damage and repair induced by bleomycin in mammalian and insect cells, Environ. Moi. Mutagen. 17: 63–68.

    Article  CAS  Google Scholar 

  • Blocher, D., and Pohlit, W., 1982, DNA double strand breaks in Ehrlich ascites tumour cells at low doses of X-rays. II. Can cell death be attributed to double strand breaks? Int. J. Radiat. Biol. 42: 329–338.

    Article  CAS  Google Scholar 

  • Bond, V. P., Fliedner, T. M., and Archambeau, J. O., 1965, Mammalian Radiation Lethality, Academic Press, New York.

    Google Scholar 

  • Bonner, J. A., Christianson, T. H., and Koval, T. M., 1991, Correlation of doxorubicin sensitivity with the stabilization of DNA topoisomerase II complexes in an extremely doxorubicin-resistant lepidopteran insect cell line, Proc. Am. Assoc. Cancer Res. 32: 338.

    Google Scholar 

  • Bradley, M. O., and Kohn, K. W., 1979, X-ray induced DNA double strand break production and repair in mammalian cells as measured by neutral filter elution, Nucleic Acids Res. 7: 793–804.

    Article  PubMed  CAS  Google Scholar 

  • Casarett, A. P., 1968, Radiation Biology, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Drabek, R., Koval, T. M., Stamato, T., Vannais, D., and Waldren, C., 1993, Transfection of CHO and CHOXR1 with DNA from TN-368 lepidopteran cells: Selection for transformants hyperresistant to ‘y-rays, Abstracts of the 41st Annual Meeting of the Radiation Research Society, p. 139.

    Google Scholar 

  • Ducoff, H. S., 1972, Causes of death in irradiated adult insects, Biol. Rev. 47: 211–240.

    CAS  Google Scholar 

  • Gassner, G., and Klemetson, D. J., 1974, A transmission electron microscope examination of hemipteran and lepidopteran gonial centromeres, Can. J. Genet. Cytoi. 16: 457–464.

    Google Scholar 

  • Gerke, C. W., Zumwalt, R. W., Stalling, D. L., and Wall, L. L., 1968, Quantitative gas-liquid chromatography of amino acids in proteins and biological substances, Analytical Biochemistry Laboratories, Inc., Columbia, MO.

    Google Scholar 

  • Gerweck, L. E., and DeLaney, T. F., 1984, Persistence of thermotolerance in slowly proliferating plateau-phase cells, Radiat. Res. 97: 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Grace, T. D. C., and Brzostowski, H. W., 1966, Analysis of the amino acids and sugars in an insect cell culture medium during cell growth, J. Insect Physiol. 12: 625–633.

    Article  CAS  Google Scholar 

  • Henle, K. J., and Dethlefsen, L. A., 1978, Heat fractionation and thermotolerance: A review, Cancer Res. 38: 1843–1851.

    CAS  Google Scholar 

  • Henle, K. J., and Leeper, D. B., 1979, Effects of hyperthermia on macromolecular synthesis in Chinese hamster ovary cells, Cancer Res. 39: 2665–2674

    PubMed  CAS  Google Scholar 

  • Hughes-Schrader, S., and Schrader, F., 1961, The kinetochore of the Hemiptera, Chromosoma 12: 327–350.

    Article  PubMed  CAS  Google Scholar 

  • Jackie, H., and Kalthoff, K., 1980, Photoreversible UV-inactivation of messenger RNA in an insect embryo (Smittia spec. Chironomidae, Diptera), Photochem. Photobiol. 32: 749–761.

    Article  Google Scholar 

  • Kern, D. H., Krag, D. N., Kauffman, G. L., Morton, D. L., and Storm, F. K., 1988, Thermal resistance of human malignant melanoma modulated by prostaglandin E2, J. Surg. Oncology 37: 60–64.

    Article  CAS  Google Scholar 

  • Konze-Thomas, B., Levinson, J. W., Maher, V. M., and McCormick, J. J., 1979, Correlation among the rates of dimer excision, DNA repair replication, and recovery of human cells from potentially lethal damage induced by ultraviolet radiation, Biophys. J. 28: 315–326.

    Article  PubMed  CAS  Google Scholar 

  • Koval, T. M., 1983a, Intrinsic resistance to the lethal effect of X-irradiation in in-sect and arachnid cells, Proc. Natl. Acad. Sci. USA 80: 4752–4755.

    Article  CAS  Google Scholar 

  • Koval, T. M., 1983b, Radiosensitivity of cultured insect cells: I. Lepidoptera, Radiat. Res. 96: 118–126.

    Google Scholar 

  • Koval, T. M., 1983c, Radiosensitivity of cultured insect cells: II. Diptera, Radiat Res. 96: 127–134.

    Article  Google Scholar 

  • Koval, T. M., 1984, Multiphasic survival response of a radioresistant lepidopteran cell line, Radiat. Res. 98: 642–648.

    Article  PubMed  CAS  Google Scholar 

  • Koval, T. M., 1986a, Enhanced survival by photoreactivation and liquid-holding following UV damage of TN-368 insect cells, Mutat. Res. 166: 149–156.

    CAS  Google Scholar 

  • Koval, T. M., 1986b, Inducible repair of ionizing radiation damage in higher eukaryotic cells, Mutat. Res. 173: 291–293.

    Article  PubMed  CAS  Google Scholar 

  • Koval, T. M., 1987, Photoreactivation of UV damage in cultured Drosophila cells, Experientia 43: 445–446.

    Article  PubMed  CAS  Google Scholar 

  • Koval, T. M., 1988, Enhanced recovery from ionizing radiation damage in a lepidopteran insect cell line, Radiat. Res. 115: 413–420.

    CAS  Google Scholar 

  • Koval, T. M., 1991, Recovery from exposure to DNA-damaging chemicals in radiation-resistant insect cells, Mutat. Res. 262: 219–225.

    CAS  Google Scholar 

  • Koval, T. M., 1996, Cold hardiness of cultured lepidopteran cells, In Vitro Cell. Deu. Biol. 32: 37A.

    Google Scholar 

  • Koval, T. M., and Kazmar, E. R, 1988, DNA double-strand break repair in eukaryotic cell lines having radically different radiosensitivities, Radiat. Res. 113: 268–277.

    Article  PubMed  CAS  Google Scholar 

  • Koval, T. M., and Suppes, D., 1992a, Heat resistance and thermotolerance in a radiation-resistant cell line, Int. J. Radiat. BioL 61: 425–431.

    Article  PubMed  CAS  Google Scholar 

  • Koval, T. M., and Suppes, D., 1992b, Survival response of TN-368 lepidopteran cells to psoralins and UVA light, In Vitro Cell. Dey. BioL 28: 88a.

    Google Scholar 

  • Koval, T. M., Myser, W. C., and Hink, W. F., 1975, Effects of X-irradiation on cell division, oxygen consumption, and growth medium pH of an insect cell line cultured in vitro, Radiat. Res. 64: 524–532.

    Article  PubMed  CAS  Google Scholar 

  • Koval, T. M., Myser, W. C., and Hink, W. F., 1976, The effect of x-irradiation on amino acid utilization in cultured insect cells, Radiat. Res. 67: 305–313.

    Article  PubMed  CAS  Google Scholar 

  • Koval, T. M., Hart, R. W., Myser, W. C., and Hink, W. F., 1977, A comparison of survival and repair of UV-induced DNA damage in cultured insect versus mammalian cells, Genetics 87: 513–518.

    PubMed  CAS  Google Scholar 

  • Koval, T. M., Myser, W. C., Hart, R. W., and Hink, W. F., 1978, Comparison of survival and unscheduled DNA synthesis between an insect and a mammalian cell line following X-ray treatments, Mutat. Res. 49: 431–435.

    CAS  Google Scholar 

  • Koval, T. M., Hart, R. W., Myser, W. C., and Hink, W. F., 1979, DNA single-strand break repair in cultured insect and mammalian cells after X-irradiation, Int. J. Radiat. BioL 35: 183–188.

    Article  CAS  Google Scholar 

  • Labandeira, C. C., and Sepkoski, J. J., 1993, Insect diversity in the fossil record, Science 261: 310–315.

    Article  PubMed  CAS  Google Scholar 

  • LaChance, L. E., and Graham, C. K., 1984, Insect radiosensitivity: Dose curves and dose-fractionation studies of dominant lethal mutations in the mature sperm of 4 insect species, Mutat. Res. 127: 49–59.

    Article  PubMed  CAS  Google Scholar 

  • LaChance, L. E., Schmidt, C. H., and Bushland, R. C., 1967, Radiation-induced sterilization, in: Pest Control: Biological, Physical, and Selected Chemical Methods (W. W. Kilgore and R. L. Doutt, eds.), Academic Press, New York, pp. 147–196.

    Google Scholar 

  • Lee, Y. J., Perlaky, L., Dewey, W. C., Armour, E. P., and Cony, P. M., 1990, Differences in thermotolerance induced by heat or sodium arsenite: Cell killing and inhibition of protein synthesis, Radiat. Res. 121: 295–303.

    Article  PubMed  CAS  Google Scholar 

  • Lepock, J. R., Frey, H. E., Heynen, M. P., Nishio, J., Waters, B., Ritchie, K. P., and Kruuv, J., 1990, Increased thermostability of thermotolerant CHL V79 cells as determined by differential scanning calorimetry, J. Cell. Physiol. 142: 628–634.

    Article  PubMed  CAS  Google Scholar 

  • Muraoka, N., Okuda, A., and Ikenaga, M., 1980, DNA photoreactivating enzyme from silkworm, Photochem. Photobiol. 32: 193–197.

    Article  CAS  Google Scholar 

  • Nielsen, O. S., and Overgaard, J., 1982, Influence of time and temperature on the kinetics of thermotolerance in L1A2 cells in vitro, Cancer Res. 42: 4190–4196.

    CAS  Google Scholar 

  • O’Brien, R. D., and Wolfe, L. S., 1964 Radiation, Radioactivity and Insects, Academic Press, New York.

    Google Scholar 

  • Oesterreich, S., Benndorf, R. and Bielka, H., 1990, The expression of the growth-related 25kDa protein (p25) of Ehrlich ascites tumor cells is increased by hypothermic treatment (heat shock), Biomed. Biochim. Acta 49: 219–226.

    PubMed  CAS  Google Scholar 

  • Perlitsch, M., and Kelner, A., 1953, The reduction by reactivating light of the frequency of phenocopies induced by ultraviolet light in Drosophila melanogaster, Science 118: 165–166.

    Article  Google Scholar 

  • Rand, A., and Koval, T. M., 1994, Coordinate regulation of proteins associated with radiation resistance in cultured insect cells, Radiat. Res. 138: S13 - S16

    Article  PubMed  CAS  Google Scholar 

  • Schrader, F., 1947, The role of the kinetochore in the chromosomal evolution of the Heteroptera and Homoptera, Evolution 1: 134–142.

    Article  Google Scholar 

  • Styer, S. C., and Griffiths, T. D., 1992, Effect of UVC light on growth, incorporation of thymidine, and DNA chain elongation in cells derived from the Indian meal moth and the cabbage looper, Radiat. Res. 130: 72–78.

    Article  PubMed  CAS  Google Scholar 

  • Suomalainen, E., 1953, The kinetochore and the bivalent structure in the Lepidoptera, Hereditas 39: 88–96.

    Article  Google Scholar 

  • Swenson. P. A., Schenley, R. L., and Boyle, J. M., 1971, Interference with respiratory control by ionizing radiations in Escherichia coli B/r, Int. J. Radiat. Biol. 20: 223.

    Google Scholar 

  • Swenson, P. A., Ives, J. E., and Schenley, R. L., 1975, Photoprotection of E. coli Bin Respiration, growth, macromolecular synthesis and repair of DNA, Photochem. Photobiol. 21: 235–241.

    Article  PubMed  CAS  Google Scholar 

  • Todo, T., Takemori, H., Ryo, H., Ihara, M., Matsunaga, T., Nikaido, O., Soto, K., and Nomura, T., 1993, A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6–4) photoproducts, Nature 361: 371–374.

    Article  PubMed  CAS  Google Scholar 

  • Tomasovic, S. P., and Koval, T. M., 1985, Relationship between cell survival and heat-stress protein synthesis in a Drosophila cell line, Int. J. Radiat. Biol. 48: 635–650.

    Article  CAS  Google Scholar 

  • Tomasovic, S. P., Steck, P. A., and Heitzman, D., 1983, Heat-stress proteins and thermal resistance in rat mammary tumor cells, Radiat. Res. 95: 399–413.

    Article  PubMed  CAS  Google Scholar 

  • Trosko, J. E., and Wilder, K., 1973, Repair of UV-induced pyrimidine dimers in Drosophila melanogaster cells in vitro, Genetics 73: 297–302.

    PubMed  CAS  Google Scholar 

  • Warters, R. L., 1988, Hyperthermia blocks DNA processing at the nuclear matrix, Radiat. Res. 115: 258–272.

    Article  PubMed  CAS  Google Scholar 

  • Warters, R. L., and Stone, O. L., 1983, Macromolecule synthesis in HeLa cells after thermal shock, Radiat. Res. 96: 646–652.

    Article  PubMed  CAS  Google Scholar 

  • Watson, K., Dunlop, G., and Cavicchioli, R. R., 1984, Mitochondrial and cytoplasmic protein syntheses are not required for heat shock acquisition of ethanol and thermotolerance in yeast, FEBS Lett. 172: 299–302.

    Article  PubMed  CAS  Google Scholar 

  • Weichselbaum, R. R., Nove, J., and Little, J. B., 1978, Deficient recovery from potentially lethal radiation damage in ataxia telangiectasia and xeroderma pigmentosum, Nature 271: 261–262.

    Article  PubMed  CAS  Google Scholar 

  • White, M. J. D., 1973, Animal Cytology and Evolution, Cambridge University Press, London.

    Google Scholar 

  • Wolf, K. W., 1994, The unique structure of lepidopteran spindles, Int. Rev. Cytol. 152: 1–48.

    Google Scholar 

  • Wong, R. S. L., and Dewey, W. C., 1982, Molecular studies on the hyperthermie inhibition of DNA synthesis in Chinese hamster ovary cells, Radiat. Res. 92: 370–395.

    Article  PubMed  CAS  Google Scholar 

  • Wyatt, G. R., 1961, The biochemistry of insect hemolymph, Annu. Rev. EntomoL 6: 75–102.

    Article  CAS  Google Scholar 

  • Yanagimoto, Y., and Mitsuhashi, J., 1996, Production of rotenone-inactivating substance(s) by rotenone-resistant insect cell line, In Vitro Cell. Dey. Biol. Anim. 32: 399–402.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koval, T.M. (1997). Stress Resistance in Lepidopteran Insect Cells. In: Koval, T.M. (eds) Stress-Inducible Processes in Higher Eukaryotic Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0069-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0069-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0071-5

  • Online ISBN: 978-1-4899-0069-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics