Skip to main content

Mixing Properties of Compact K = −1 FLRW Models

  • Chapter
Deterministic Chaos in General Relativity

Part of the book series: NATO ASI Series ((NSSB,volume 332))

  • 350 Accesses

Abstract

We study the mixing properties of compact k = −1 FLRW models, as a function of the cosmological parameters and the topological compactification scale. We find the mixing to be less pronounced than some of the claims made previously, nevertheless in low density universes the mechanism can give rise to appreciable mixing and result in a reduction in the measured cmwbr anisotropy on a range of angular scales. These models also have other important features, namely: (i) they allow chaos to be expressed in a gauge invariant way; (ii) they are structurally stable and (iii) in low density universes they result in radically different estimates of length scales with potentially important consequences for the interpretation of the angular variation of the background radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See for example Belinski, V.A., Khalatnikov, I.M. and Lifshitz, E.M. (1970) Adv. Phys., 19, 525.

    Article  ADS  Google Scholar 

  2. Barrow, J.D. (1982) Phys. Rep., 85, 1.

    Article  MathSciNet  ADS  Google Scholar 

  3. Burd, A.B., Buric, N. and Tavakol, R.K. (1991) Class. Quantum Grav., 8, 123.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Koiller, J., De Mello Neto, J.R.T. and Damiao Soares, I. (1985) Phys. Lett, 110A, 260.

    ADS  Google Scholar 

  5. Lockhart, C.M., Misra B. and Prigogine I. (1982) Phys. Rev. D., 25, 921.

    Article  MathSciNet  ADS  Google Scholar 

  6. Gurzadyan V. G. and Kocharyan A.A., (1992) Astron. Astrophys., 260, 1614.

    Google Scholar 

  7. Calzetta, E. and El Hasi, C. (1992): ‘Chaotic Friedmann Robertson Cosmology’, Preprint.

    Google Scholar 

  8. Zydlowski, M. and Lapeta, A. (1990) Phys. Lett, 148A, 239.

    ADS  Google Scholar 

  9. Arnold, V.I. (1989) Mathematical Methods of Classical Mechanics, 2nd ed. (Springer-Verlag, New York).

    Book  Google Scholar 

  10. Hopf, H. (1936) Trans. Am. Math. Soc., 45, 241.

    MathSciNet  Google Scholar 

  11. Anosov, D. (1967) Proc. Steklov Ins., 90, Ins. No. 90.

    Google Scholar 

  12. Hadamard J. (1898) J. Math. Pures et Appl., 4, 27.

    Google Scholar 

  13. Hedlund, G.A. (1939) Bull. Amer. Math. Soc., 45, No. 4, 241.

    Article  MathSciNet  MATH  Google Scholar 

  14. Sinai, Y.G. (1960) Sov. Math. Dok., 1, 335.

    MathSciNet  MATH  Google Scholar 

  15. Wolf, J.A. (1967) Spaces of constant curvature, McGraw-Hill, New York.

    MATH  Google Scholar 

  16. Thurston, W.P. and Weekes, J.R. (1984) Scientific American, July, p.94.

    Google Scholar 

  17. Ellis, G.F.R. (1971) Gen. Rel. Grav., 11, 11.

    Google Scholar 

  18. Chitre, D.M. (1972) University of Maryland Technical Report No. 72-125.

    Google Scholar 

  19. Pullin, J. (1990) Syracuse preprint 90-0732.

    Google Scholar 

  20. Ellis, G.F.R. and Rothman, T. (1993) ‘Lost Horizons’. Am. Journ. Phys. (to appear).

    Google Scholar 

  21. Burd, A. and Tavakol, R. (1993) Phys. Rev., D 47, 5336.

    Article  ADS  Google Scholar 

  22. Nielson, H.B. and Rugh, S.E. ‘Chaos in Fundamental Forces’, In Proceedings of a symposium on Quantum Physics and the Universe, Waseda University, 1992. To appear.

    Google Scholar 

  23. Tavakol, R.K. and Ellis, G.F.R. (1988) Phys. Lett, 130A, 217.

    MathSciNet  ADS  Google Scholar 

  24. Coley, A.A. and Tavakol, R.K. (1992) Gen. Rel. Grav., 25, 835.

    Article  MathSciNet  ADS  Google Scholar 

  25. Schneider, P., Ehlers, J., and Falco, (1992). Gravitational Lensing. Springer, Berlin.

    Google Scholar 

  26. Arnold, V. and Avez, A. (1968) Ergodic Problems of Classical Mechanics, Benjamin, New York.

    Google Scholar 

  27. Ellis, G. and Tavakol, R. (1993) ‘Geodesic Instability and Isotropy of CMWBR’, Class. Quantum Grav., to appear.

    Google Scholar 

  28. Ellis, G.F.R. (1971). In General Relativity and Cosmology, Proc Int School of Physics “Enrico Fermi” (Varenna), Course XLVII. Ed. RK Sachs (Academic Press), 104-179.

    Google Scholar 

  29. Matravers, D.R. and Aziz, A.M. (1988) MAASSA, 47, 124.

    ADS  Google Scholar 

  30. Thurston, W.P. (1978) The geometry and topology of three manifolds, Princeton University Lecture Notes.

    Google Scholar 

  31. Matveev, S.V. and Fomenko, A.T. (1988) Russ. Math. Surv., 43, 3; Weeks, J. (1985) Princeton University Ph.D. Thesis.

    Article  MathSciNet  MATH  Google Scholar 

  32. Gott J.R. III (1980) Mon. Not. R. Astron. Soc., 193, 153.

    MathSciNet  ADS  Google Scholar 

  33. Meyerhoff, R. (1986) Commun. Math. Helv. 61, 271.

    Article  MathSciNet  MATH  Google Scholar 

  34. Hayward, G. and Twamley, J. (1990) Phys. Lett., 149 A, 84.

    ADS  Google Scholar 

  35. Ellis, G.F.R. and Schreiber, G. (1986) Phys. Letts., 115A, 97.

    Article  MathSciNet  ADS  Google Scholar 

  36. Fairall, A.P. (1985) Mon. Not. Ast. Soc. S. A. 44, 114.

    Google Scholar 

  37. Stevens, D, Scott, S. and Silk, J, (1993). ‘Microwave Background Anisotropy in a Toroidal Universe’. To appear, Phys Rev Lett.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ellis, G., Tavakol, R. (1994). Mixing Properties of Compact K = −1 FLRW Models. In: Hobill, D., Burd, A., Coley, A. (eds) Deterministic Chaos in General Relativity. NATO ASI Series, vol 332. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9993-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9993-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9995-8

  • Online ISBN: 978-1-4757-9993-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics