Skip to main content

Combined Use of the Acetylene Inhibition Technique and Microsensors for Quantification of Denitrification in Sediments and Biofilms

  • Chapter

Part of the book series: Federation of European Microbiological Societies Symposium Series ((FEMS,volume 56))

Abstract

The introduction of the acetylene inhibition technique for quantification of denitrification (Balderston et al. 1976; Yoshinari and Knowles, 1976) supplied researchers of this reaction with a highly sensitive and relatively simple assay. Nitrous oxide is a free intermediary in the bacterial reduction of NO 3 to N2, and the reduction of N2O is inhibited by acetylene. The accumulation rate of N2O in the inhibited sample is thus a measure of the denitrification activity. Gas chromatographs equipped with ECDs (Electron Capture Detectors) can be used to quantify the evolved N2O with good accuracy and extremely high detection limits. A problem by use of gas chromatography is, however, the need to extract nitrous oxide from the sample before analysis. The procedures for extraction of sample segments may be elaborated to yield a reasonable spatial resolution of the assay (e.g., Sørensen et al, 1979), but the highest resolution by such an approach is still rather on a centimeter than on a millimeter scale while denitrifying microenvironments such as biofilms often have dimensions of less than 1 mm. The recent introduction of a microsensor for simultaneous detection of O2 and N2O has now made it possible to determine the activity within denitrifying microenvironments with a spatial resolution of less than 0.1 mm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller, R.C., 1980, Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment, Geochim. Cosmochim. Acta, 44: 1955.

    Article  CAS  Google Scholar 

  • Andersen, T.K., Jensen, M.H., and J. Sorensen, 1984, Diurnal variation of nitrogen cycling in coastal, marine sediments. I. Denitrification, Mar. Biol., 83:171.

    Article  CAS  Google Scholar 

  • Broecker, W.S., and Peng, T.-H., 1974, Gas exchange rates between air and sea, Tellus, 26: 21.

    Article  CAS  Google Scholar 

  • Balderston, W.L., Sherr, B., and Payne, W.J., 1976, Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus, Appl. Environ. Microbiol., 31: 504.

    CAS  Google Scholar 

  • Berner, R.A., 1980, “Early diagenesis. A theoretical approach,” Princeton University Press, Princeton.

    Google Scholar 

  • Broecker, W.S., and Peng, T.-H., 1974, Gas exchange rates between air and sea, Tellus, 26: 21.

    Article  CAS  Google Scholar 

  • Capone, D.G., and Bautista, M., 1985, Direct evidence for a groundwater source for nitrate in nearshore marine sediments, Nature, 313: 143.

    Article  Google Scholar 

  • Chang, Q., and Mayerhof, E., 1986, Membrane-dialyzer injection loop for enhancing the selectivity of anion-responsive liquid-membrane electrodes in flow systems, Anal. Chim. Acta., 186: 81.

    Article  CAS  Google Scholar 

  • Christensen, P.B., Nielsen, L.P., Revsbech, N.P., and Sorensen, J., 1989, Microzonation of denitrification activity in stream sediments as studied with a combined oxygen and nitrius oxide microsensor, Appl. Environ. Microbiol., 55: 1234.

    PubMed  CAS  Google Scholar 

  • Christensen, P.B., and Sorensen, J., 1986, Temporal variation of denitrification activity in plant covered littoral sediment (Lake Hampen, Denmark). Appl. Environ. Microbiol., 51: 1174.

    PubMed  CAS  Google Scholar 

  • Dalsgaard, T., 1988, “Denitrification in biofilms,” M.Sc. thesis, University of Aarhus, Aarhus.

    Google Scholar 

  • de Beer, D., and Sweerts, J.-P.R.A., 1989, Measurement of nitrate gradients with an ion-selective microelectrode. Anal. Chim. Acta, 219: 351.

    Article  Google Scholar 

  • Gust, G., Booij, K., Helder, W., and Sundby, B., 1987, On the velocity sensitivity (stirring effect) of polarographic oxygen microelectrodes, Neth. J. Sea Res., 21: 255.

    Article  CAS  Google Scholar 

  • Kaspar, H.F., Tiedje, J.M., and Firestone, R.B., 1981, Denitrification and dissimilatory nitrate reduction to ammonium by digested sludge, Can. J. Microbiol., 38: 486.

    Google Scholar 

  • Koike, I., and Sorensen, J., 1988, Nitrate reduction and denitrification in marine sediments, in: “Nitrogen cycling in coastal marine environments,” T.H. Blackburn and J. Sorensen, eds., SCOPE 33, John Wiley & Sons, Chichester.

    Google Scholar 

  • Li, Y.-H., and Gregory, S., 1974, Diffusion of ions in sea water and in deep sea sediments, Geochim. Cosmochim. Acta., 38: 703.

    Article  CAS  Google Scholar 

  • Nishio, T., 1982, “Nitrogen cycling in coastal and estuarine sediments with special reference to nitrate reduction, denitrification and nitrification,” Doctoral dissertation, University of Tokyo, Tokyo.

    Google Scholar 

  • Oremland, R.S., Umberger, C., Culbertson, C.W., and Smith, R.L., 1984, Denitrification in San Fransisco intertidal sediments, Appl. Environ. Microbiol., 47: 1106.

    PubMed  CAS  Google Scholar 

  • Revsbech, N.P., 1983, In situ measurement of oxygen profiles of sediments by use of oxygen microelectrodes, in: “Polarographic oxygen sensors: Aquatic and physiological applications,” E. Gnaiger and H. Forster, eds., Springer, Heidelberg.

    Google Scholar 

  • Revsbech, N.P., 1989a, An oxygen microsensor with a guard cathode, Limnol. Oceanogr., 34: 474.

    Article  CAS  Google Scholar 

  • Revsbech, N.P., 1989b, Diffusion characteristics of microbial communities determined by use of oxygen microsensors. J. Microbiol. Meth., 9: 111.

    Article  Google Scholar 

  • Revsbech, N.P., Christensen, P.B., Nielsen, L.P., and Sorensen, J., 1988, A combined oxygen and nitrous oxide microsensor for denitrification studies. Appl. Environ. Microbiol., 54: 2245.

    PubMed  CAS  Google Scholar 

  • Revsbech, N.P., Christensen, P.B., Nielsen, L.P., and J. Sorensen, 1989, Denitrification in a trickling filter biofilm studied by a microsensor for oxygen and nitrous oxide, Water Res., 23: 867.

    Article  CAS  Google Scholar 

  • Revsbech, N.P., and Jorgensen, B.B., 1986, Microelectrodes: Their use in microbial ecology, in: “Advances in Microbial Ecology, vol. 9,” K.C. Marshall, ed., Plenum, New York.

    Google Scholar 

  • Revsbech, N.P., Madsen, B., and Jorgensen, B.B., 1986, Oxygen production and consumption in sediments determined at high spatial resolution by computer simulation of oxygen microelectrode data, Limnol. Oceanogr., 31: 293.

    Article  CAS  Google Scholar 

  • Riemer, M., and Harremoes, P., 1978, Multi-component diffusion in denitrifying biofilms, Prog. Wat. Res., 10: 149.

    CAS  Google Scholar 

  • Sextone, A.J., Revsbech, N.P., Parkin, T.B., and Tiedje, J.M., 1985, Direct measurement of oxygen profiles and denitrification rates in soil aggregates, Soil. Sci. Soc. Am. J., 49: 645.

    Article  Google Scholar 

  • Slater, J.M., and Capone, D.G., 1989, Nitrate requirement for acetylene inhibition of nitrous oxide reduction in marine sediments, Microb. Ecol., 17: 143.

    Article  CAS  Google Scholar 

  • Sørensen, J, 1978, Denitrification rates in a marine sediment as measured the acetylene inhibition technique, Appl. Environ. Microbiol., 36: 139.

    PubMed  Google Scholar 

  • Sørensen, J., Jorgensen, B.B., and Revsbech, N.P., 1979, A comparison of oxygen, nitrate, and sulfate respiration in coastal marine sediments, Microb. Ecol., 5: 105.

    Article  Google Scholar 

  • Sørensen, J., Rasmussen, L.K., and Koike, I., 1987, Micromolar sulfide concentration alleviate acetylene blockage of nitrous oxide reduction by denitrifying Pseudomonas fluorescens. Can. J. Microbiol., 33: 1001.

    Article  Google Scholar 

  • Sweerts, J.-P.R.A., and de Beer, D., 1989, Microelectrode measurements of nitrate gradients in the littoral and profundal sediments of a meso-eutrophic lake (Lake Vechten, The Netherlands), Appl. Environ. Microbiol., 55: 754.

    PubMed  CAS  Google Scholar 

  • Tam, T.-Y., and Knowles, R., 1979. Effects of sulfide and acetylene on nitrous oxide reduction by soil and by Pseudomonas aeruginosa, Can. J. Microbiol., 25: 1133.

    Article  CAS  Google Scholar 

  • Thomas, R.C., 1978, “Ion-sensitive intracellular microelectrodes, how to make and use them”. Academic Press, London.

    Google Scholar 

  • Yoshinari, T., and Knowles, R., 1976, Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem. Biophys. Res. Commun., 69: 705.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Revsbech, N.P., Sørensen, J. (1990). Combined Use of the Acetylene Inhibition Technique and Microsensors for Quantification of Denitrification in Sediments and Biofilms. In: Revsbech, N.P., Sørensen, J. (eds) Denitrification in Soil and Sediment. Federation of European Microbiological Societies Symposium Series, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9969-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9969-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9971-2

  • Online ISBN: 978-1-4757-9969-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics