Skip to main content

Fault-Free or Fault-Tolerant VLSI Manufacture

  • Chapter
  • 88 Accesses

Abstract

A dichotomy affects the approach to the manufacture of integrated circuits. Some manufacturers aim for “zero defects,” while others are deeply involved in using circuits with fault-tolerance. For either approach, future manufacturing facilities require extensive defect learning. The methodology for establishing defect learning objectives far into the future is the topic of this paper.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.R. DeSimone, N.M. Donofrio, B.L. Flur, R.H. Kruggcl, II.L. Leung, and R. Schnadt, “Dynamic Memories,” in 1979 IEEE Int. Solid-State Circuit Conf. Dig. Tech Papers, pp. 154–155, Feb. 1979.

    Google Scholar 

  2. R.P. Ccnkcr, D. Clemens, W.R. Huber, J.B. Petrizzi, F.J. Procyk, and G.M. Trout, “A Fault Tolerant 64K Dynamic RAM,” in 1979 IEEE Int. Solid-Slate Circuit Conf. Dig. Tech Papers, pp. 150-151, 290, Feb. 1979.

    Google Scholar 

  3. R.P. Ccnkcr, D. Clemens, W.R. Huber, J.B. Petrizzi, F.J. Procyk, and G.M. Trout, “A Fault Tolerant 64K Dynamic Random-Access Memory,” IEEE Trans. Electron Devices, Vol. ED-26, pp. 853–860, June 1979.

    Google Scholar 

  4. S. Matsue, Informal discussion session on redundancy in RAMs, 1982 IEEE Int. Solid-State Circuit Conf. Dig. Tech Papers, p. 229, Feb. 1982.

    Google Scholar 

  5. M. Ishihara, T. Matsumoto, S. Shimizu, K. Mitsusada, and K. Shimohigashi, “A 256K Dynamic MOS RAM with Alpha Immune and Redundancy,” in 1982 IERE Int. Solid-State Circuit Conf Dig. Tech Papers, pp. 74-75, Feb. 1982.

    Google Scholar 

  6. T. Nakano, T. Yabu, E. Noguchi, K. Shir, and K. Miyasaka, “A Sub 100ns 256K DRAM,” in 1982 IEEE Int. Solid-State Circuit Conf. Pig. Tech Papers, pp. 224-225, Feb. 1983.

    Google Scholar 

  7. T. Fujii, K. Mitakc, K. Tada, Y. Inoue, and H. Wanatabc “A 90ns 256K × 1b DRAM with Double Level Al Technology,” in 1982 IEEE Int. Solid-State Circuit Conf. Dig. Tech Papers, pp. 226-227, Feb. 1983.

    Google Scholar 

  8. K. Shimotori, K. Fujishima, H. Ozaki, S. Uoya, and M. Nagatomo “A 100ns 256 K DRAM with Page-Nibble Mode,” in 1982 IEEE Int. Solid-State Circuit Conf. Dig. Tech Papers, pp. 228-229, Feb. 1983.

    Google Scholar 

  9. K. Natori, T. Furuyama, S. Sto, S. Fujii, H. Toda, T. Tanaka, and O. Ozawa, “A 100ns 256 K DRAM with Page-Nibble Mode,” in 1982 IEEE Int. Solid-State Circuit Conf. Pig. Tech Papers, pp. 232-233. Feb. 1983.

    Google Scholar 

  10. A.R. Strube, Informal discussion session on redundancy in RAMs, 1982 IEEE Int. Solid-State Circuit Conf Dig. Tech Papers, p. 229, Feb. 1982.

    Google Scholar 

  11. C.H. Stapper, A.N. McLaren, and M. Drcckmann, “Yield Model for Productivity Optimization of VLSI Memory Chips with Redundancy and Partially Good Product,” IBM I. Res, Develop., vol. 24, pp 398–409, May 1980.

    Google Scholar 

  12. C.H. Stapper, “Modeling of Integrated Circuit Defect Sensitivities.” IBM I. Res. Dev., Vol. 27, No. 6, pp. 549–557, Nov. 1983.

    Article  Google Scholar 

  13. A.P. Kovchavtchev and A.A. Frantsuzov, “Defect Density in Thermally Grown Silicon Dioxide with Thicknesses 30-600 Å,” Mikroclektronika, Vol. 8, pp. 439–444, Sept.–Oct. 1979.

    Google Scholar 

  14. S. Gandemer, B. Tremintin, and J.J. Charlet, “A Method for Determining Critical Areas and Critical Levels for IC Yield Fstimation,” in Yield Modeling and Defect Tolerance in VLSI, edited by W. Moore, W. Maly, and A. Strojwas, Bristol, UK: pp. 101–110, 1988.

    Google Scholar 

  15. S. Gandemer, Modélisation de l’impact des défauts de fabrication sur le rendement des microcircuits intégrés fabriqués en technologie silicium, Doctoral Thesis, École Nationale Supérieure des Télécommunications, Paris, Chap. 4, pp. IV.b.5-IV.b.8, Sept. 1987.

    Google Scholar 

  16. W. Maly, M Thomas, J. Chinn, and D. Campbell, “Characterization of Type, Size and Density of Spot Defects in Metallization Layer,” in Yield Modeling and Defect Tolerance in VLSI, edited by W. Moore, W. Maly, and A. Strojwas, Bristol, UK: pp. 71–90, 1988.

    Google Scholar 

  17. C.H. Stapper, “Fact and Fiction in Yield Modeling,” Microelectronics Journal, Vol. 20, Nos. 1–2, pp. 129–151, May 1989.

    Article  Google Scholar 

  18. R. Glang, “Defect Size Distribution in VLSI Chips,” to be published in the Proceeding of IEEE 1989 International Conference on Microelectronic Test Structures, March 1990.

    Google Scholar 

  19. K. Okumura, “IC/LSI Manufacturing,” Proceedings of SEMI Technology Symposium 88, pp. 14–18, Nov. 28, 1988.

    Google Scholar 

  20. K. Okumura, Private communication, June 6 1989.

    Google Scholar 

  21. D.M.H. Walker, Yield Simulation for Integrated Circuits, PhD Thesis, Carnegie Mellon University, Computer Science Department, CMU-CS-86-143, pp. 49-115, July 1986.

    Google Scholar 

  22. D.M.H. Walker, Yield Simulation for Integrated Circuits, Kluwer Academic Publishers: Norwell, MA, pp. 51–130, 1987.

    Book  Google Scholar 

  23. M. Rivicr, “Random Yield Simulation Applied to Physical Circuit Design,” in Yield Modeling and Defect Tolerance in VLSI, edited by W. Moore, W. Maly, and A. Strojwas, Bristol, UK: pp. 111–119, 1988.

    Google Scholar 

  24. S. Gandemer, B. Trcmintin, and J.J. Charlet, “Critical Area and Critical Levels Calculation in I.C. Yield Modeling,” IEEE Trans. Electron Devices, Vol. 35, pp. 158–166, Feb. 1988.

    Article  Google Scholar 

  25. V. Ramakrishna, and J.E. Harrigan, “Defect Learning Requirements,” Solid-Slate Technology, Vol. 32, pp. 103–105, Jan. 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stapper, C.H. (1990). Fault-Free or Fault-Tolerant VLSI Manufacture. In: Stapper, C.H., Jain, V.K., Saucier, G. (eds) Defect and Fault Tolerance in VLSI Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9957-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9957-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9959-0

  • Online ISBN: 978-1-4757-9957-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics