Skip to main content

Cytochrome Oxidase

A Predictive Marker of Neurodegeneration

  • Chapter

Abstract

Cytochrome oxidase has been used in the past as a marker of neuronal activity. We propose that cytochrome oxidase may also serve as a useful marker for predicting potential neurodegeneration, particularly following chronic brain hypoperfusion. This proposal is based on a series of experiments in rats subjected to mild chronic brain hypoperfusion and tested at determined time points for regional cytochrome oxidase activity, visuo-spatial memory, reactive astrocytosis, neurodegenerative changes and microtubule associated protein 2 (MAP-2). The results of these experiments suggest the following scenario: four weeks following chronic brain hypoperfusion, regional cytochrome oxidase activity is reduced in parallel with spatial memory function although no neurodegenerative changes are seen anywhere in the brain, despite an increased density of astrocytes in the hippocampus. After 8 weeks of ischemia, neurodegenerative changes are still absent but spatial memory remains depressed while the postsynaptic dendritic marker MAP-2 shows loss of immunostaining in the apical dendrites of CA1 neurons (suggesting continued metabolic dysfunction of these neurons). Twelve weeks after brain hypoperfusion, some neurodegenerative signs begin to be seen in CA1 neurons with continued MAP-2 reduction and reactive gliosis. If rats with chronic brain hypoperfusion are kept for 25 weeks, neuronal loss and extended hippocampal neurodegeneration with cortical atrophy can be seen. Neuronal loss and extension of neurodegeneration 25 weeks after chronic brain hypoperfusion are dependent on factors: age of animal, severity of the chronic ischemic insult and of ischemia. We suggest that the chronologic progression of memory dysfunction, gliosis and MAP-2 loss following mild but chronic brain hypoperfusion are due to lowered mitochondrial oxidative phosphorylation and reduced energy metabolism, initially in ischemic-sensitive neurons, such as in CA1. This energy metabolic down-regulation which is reflected by depressed cytochrome oxidase activity in the CA1 region, appears to precede neurodegenerative changes of CA1 neurons by many weeks. Cytochrome oxidase may be an important pathogenetic precursor of neurodegenerative pathology, particularly Alzheimer’s disease which shares many of the anatomic and cognitive deficits seen in the rat model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdollahian, N. P., Cada, A., Kinney, M., Sutherland, R. J., Gonzalez-Lima, F., and de la Torre, J.C., 1997, Chronic brain ischemia produces progressive memory impairment in rats due to a dysfunction in the oxidative energy metabolism, Soc. Neuro. Abstr 23: 832.

    Google Scholar 

  • Albers, R. W., Siegel, G. J., and Stahl, W. L., 1994, Et: Basic Neurochemistry, Siegel, G. J., Agranoff, B. W., Albers, R. N.. Molinoff, P. B. (Eds) Raven Press, New York,pp: 49–73.

    Google Scholar 

  • Astrup, J. Sorensen, P. M., and Sorensen, J.R., 1981, Oxygen and glucose consumption related to Na, K transport in canine brain, Stroke 12: 726–730.

    Article  PubMed  CAS  Google Scholar 

  • Ball, M.J., 1977, Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration In the hippocampus with aging and dementia: A quantitative study, Acta Neuropath., 37: 11–118.

    Article  Google Scholar 

  • Banali, R.B., Gehrmann, J., and Kreutzberg, G.W., 1996, Early glial reactions to ischemic lesions, Adv. Neurology, 71: 329–337.

    Google Scholar 

  • Barnes, C.A., 1988, Aging and the physiology of spatial memory, Neurobio. Aging 9: 563–568.

    Article  CAS  Google Scholar 

  • Barnes, C.A., Nadel, L., and Honig, W.K., 1980, Spatial memory deficits in senescent rats, Can. J. Psychol. 34: 29–39.

    Article  PubMed  CAS  Google Scholar 

  • Baron, J.C., and Marchai, G., 1992, Vieliessement cérébral et cardiovasulaire et metabolisme énergétique, cerebral, Presse Med. 21: 1231–1237.

    PubMed  CAS  Google Scholar 

  • Beal, M.F., Hyman, B.T., and Koroshetz, W., 1993, Do defects in mitochondria) metabolism underlie the pathology of neurodegenerative diseases, TINS 16: 125–131.

    PubMed  CAS  Google Scholar 

  • Beatty, W.W., Bierley, R.A., and Boyd, J.G., 1985, Preservation of accurate spatial memory in aged rats, Neurobiol. Aging 6: 219–225.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, C. M., Mlady, G., Fleschner, M., and Rose, G. M., 1996b, Synergy between chronic corticosterone and sodium azide treatments in producing spatial learning deficit and inhibiting cytochrome oxidase activity, Proc. Natl. Acad. Sci. 93: 1330–1334.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M.C., Mlady, G., Kwon, YW, and Rose, G.M., 1996a, Chronic in vivo sodium azide infusion induces selective and stable inhibition of cytochrome c oxidase, J. Neurochem. 66: 2606–2611.

    Article  PubMed  CAS  Google Scholar 

  • Berman, R.F., Goldman, H., and Altman, H.J., 1988, Age-related changes in regional cerebral blood flow and behavior in Sprague-Dawley rats, Neurobiol Aging 9: 691–696.

    Article  PubMed  CAS  Google Scholar 

  • Blass, J.P., 1993, Pathophysiology of Alzheimer Syndrome, Neurol. 43: 25–38.

    Google Scholar 

  • Borowosky, I.W., and Collins, R.C., 1989, Metabolic anatomy of the brain: a comparison of regional capillary density, glucose metabolism, and enzyme activities, J. Comp. Neurol. 288: 401–413.

    Article  Google Scholar 

  • Botel, J. P., Senti, M., Nogues, X., Rubies-Prat, J., Roquer, J., Dolhaberriague, L., and Olive, J., 1992, Lipoprotein and apolipoprotein profile in men with ischemic stroke, Stroke 23: 1556–1562.

    Article  Google Scholar 

  • Brouillet, E., Hyman, B., Jenkins, B. G., and Henshaw, D. R., 1994, Systemic of local administration of azide produces striatal lesions by an-energy-impairment-induced excitotoxic mechanism, Exp. Neurol. 129: 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Café, C., Torri, C., Gatti, S., Adinolfi, D., Gaetani, P., Rodriguez„ y Baena, R., and Marzatico, F., 1994, Changes in non-synaptosomal and synaptosomal mitochondrial membrane-linked enzymatic activities after transient cerebral ischemia, Neurochem. Res. 19: 1551–55.

    Google Scholar 

  • Cave, C.B., and Squire, L.R., 1991, Equivalent impairment of spatial and nonspatial memory following damage to the human hippocampus, Hippocampus I: 329–40.

    Google Scholar 

  • Chagnon, P. Betard, C., Robitaille, Y., Cholette, A., and Gavreau, D., 1995, Distribution of brain cytochrome oxidase activity in various neurodegenerative activities, Neurorep. 6: 711–715.

    CAS  Google Scholar 

  • Chandrasekaran, K., Giordano, t., Brady, D. R., Stoll, J., Martin. L. J., and Rapoport, S. I., 1994 Impairment in mitochondrial cytochrome oxidase genes expression in Alzheimer’s disease, Brain Res. Mol. Brain Res. 24: 336–340.

    Article  CAS  Google Scholar 

  • Chandrasekaran, K., Hatanpaa, K., Brady, D.R., and Rapoport, S.I., 1996, Evidence for physiological down-regulation of brain oxidative phosphorylation in Alzheimer’s disease, Exp. Neurology 142: 80–88.

    Article  CAS  Google Scholar 

  • Cheng, B., and Mattson, M.P., 1992, Glucose deprivation elicits neurofibrillary tangle-like antigenic changes in hippocampus neurons: prevention by NGF:bFGF, Exp. Neurol. 117: 114–123.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, D. D., and Sokoloff, L., 1994, In: Basic Neurochemistry. G. J. Siegel, B. W. Agranoff, R. W. Albers, P.B. Molinoff, (Eds), Raven Press, New York, pp:645–680.

    Google Scholar 

  • Colton, C.A., and Gilbert, D.L., 1987, Production of superoxide anion by a CNS macrophage, the microglia, FEBS Let. 223: 284–288.

    Article  CAS  Google Scholar 

  • Couderc, R., Mahieux, F., and Bailleul, S., 1994, Apolipoprotein E4 allele frequency, ischemic cerebrovascular disease and Alzheimer’s disease, Stroke 24: 1416–1417.

    Google Scholar 

  • Davignon, J., Gregg, R.E., and Sing, C. F., 1988, Apolipoprotein E polymorphism and atherosclerosis, Atherosclerosis, 8: 1–21.

    CAS  Google Scholar 

  • de la Torre, J. C., 1997e, Hemodynamic consequences of deformed microvessels in the brain in Alzheimer’s disease, Ann. N. Y. Acad. Sci. 826: 75–91

    Article  PubMed  Google Scholar 

  • de la Torre, J. C., Butler, K., Kozlowski, R, Fortin, T., and Saunders, J. K., 1995, Correlates between nuclear magnetic resonance spectroscopy, diffusion wighted imaging and CAI morphometry following chronic brain ischemia, J. Neurosci. Res. 41: 238–245.

    Article  PubMed  Google Scholar 

  • de la Torre, J. C., and Hachinski, V. (Eds.), 1997, Cerebrovascular Pathology in Alzheimer’s Disease, Ann. N. Y Acad. Sci. 826: pp 1–523.

    Google Scholar 

  • de la Torre, J. C., and Mussivand, T., 1993, Can disturbed brain microcirculation cause Alzheimer’s disease’?, Neurol. Res. 15: 146–153.

    PubMed  Google Scholar 

  • de la Torre, J. C., 1994, Impaired brain microcirculation may trigger Alzheimer’s disease, Neurosci. Behan Res. 18: 397–401

    Article  Google Scholar 

  • de la Torre, J. C., Cada, A. E., Nelson, N., Davis, G., Sutherland, R., and Gonzalez-Lima, F., 1997b, Reduced cytochrome oxidase and memory dysfunction after chronic brain ischemia in aged rats, Neurosci. Lett., 223: 165–168.

    Article  PubMed  Google Scholar 

  • de la Torre, J. C., 1997a, Cerebromicrovascular pathology in Alzheimer’s disease compared to normal aging, Gerontology, 43: 26–43.

    Article  PubMed  Google Scholar 

  • de la Torre, J. C., and Fortin T., 1994, A chronic physiological rat model of dementia, Behay. Brain Res. 63: 35–40.

    Article  Google Scholar 

  • de la Torre, J.C., Fortin T., Park G.A.S., Pappas B.A., and Richard M.T., 1993, Brain blood flow restoration rescues chronically damaged rat CAI neurons, Brain Res. 623: 6–15.

    Article  PubMed  Google Scholar 

  • de la Torre, J.C., Fortin, T., Park, G., and de Socarraz, H., 19926, Aged but not young rats develop metabolic, memory deficits after chronic brain ischemia, Neurol. Res.,14 Supp.: I77–180.

    Google Scholar 

  • de la Torre, J.C., Fortin, T., Park, G.A.S., Butler, K.S., Kozlowski, P., Pappas, B.A., de Socarraz, H., Sanders, J.K., and Richard, M.T., 1992a, Chronic cerebrovascular insufficiency induces dementia-like deficits in aged rats, Brain Res. 582: 186–195.

    Article  PubMed  Google Scholar 

  • de la Torre, J.C., Nelson, N., and Sutherland, R.J., 1996, Pharmacological reversal of memory deficits in aging rats, J. Neurochem., Supp. 2: S11.

    Google Scholar 

  • de la Torre, J.C., Pappas, B.A., Keyes, M., and Fortin, T., 1996, Progressive neurodegeneration in rat brain after 2-VO or 3-VO. In: Neurodegenerative diseases, Plenum Press: NY pp. 74–84.

    Google Scholar 

  • De Vellis, J., Wu, D.K., and Kumar, S., 1987, Enzyme inductions and regulation of protein synthesis. In: Federoff S, Vernadakis, A. (eds): Astrocytes, Vol. 2. Academic Press: NY, p 209–237.

    Google Scholar 

  • Delacourte, A., 1990, General and dramatic glial reaction in Alzheimer’s brains, Neurol. 40: 33–37.

    Article  CAS  Google Scholar 

  • DiMattia, B.D., and Kesner, R.P., 1988, Spatial cognitive maps: differential role of parietal cortex and hippocampal formation, Behay. Neurosci., 102: 471–480.

    Article  CAS  Google Scholar 

  • Dimlich, R.V.W., Showers, M.J., and Shipley, M.T., 1990, Densitometric analysis of cytochrome oxidase in ischemic rat brain, Brain Res. 516: 181–191.

    Article  PubMed  CAS  Google Scholar 

  • Ducket, S., 1991, The Pathology of the Aging Nervous System, Lea and Febringer, Philadelphia.

    Google Scholar 

  • Duffy, P.E., and Rapport, M., 1980, Glial fibrillary acidic protein and Alzheimer’s-type dementia, Neural. 30: 778–782.

    CAS  Google Scholar 

  • Dunnet, S., 1991, Cholinergic grafts, memory and aging, TINS, 14: 371–376.

    Google Scholar 

  • Eklof, B., and Siesjö, B.K., 1972, The effect of bilateral carotid artery ligation upon the blood flow and the energy state of the rat brain, Acta Physiol. Scand., 86: 155–165.

    Article  PubMed  CAS  Google Scholar 

  • Erecinska, M., and Silver, I.A., 1989, ATP and brain function, J. Cerebr. Blood Flow Metab. 9: 2–19.

    Article  CAS  Google Scholar 

  • Erkinjuntti, T., Haltia, M., Palo, J., Sulkava, R., and Petau, A., 1988, Accuracy of the clinical diagnosis of vascular dementia: a preospective clinical and post-mortem neuropathological study, J. Neurol. Neurosurg. Psvchiat. 51: 1037–44.

    Article  CAS  Google Scholar 

  • Evans, G., Brennan, P., Skorpanich, M.A., and Held, D., 1984, Cognitive mapping and elderly adults: verbal and location memory for urban landmarks, J. Geront., 39: 452–457.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald, M.J.T., 1985, Neuroanatomy: basic and applied. Balliere Tindall: London.

    Google Scholar 

  • Flicker, C., Bartus, R.T., Crook, T.H., and Ferris, S.H., 1984, Effects of aging and dementia upon recent visuospatial memory, Neurobio. Aging 5: 275–283.

    Article  CAS  Google Scholar 

  • Frederickson, R.C., 1992, Astroglia in Alzheimer’s disease, Neurobiol. Aging, 14: 239–253.

    Article  Google Scholar 

  • Frisoni, G., Geroldi, C., Blanchetti, A., Trabucchi, M., Govoni, S., Franceschini, and G., Calabresi, L., 1994, apolipoprotein E4 allele frequency in vascular dementia and Alzheimer’s disease, Stroke 25: 1703.

    Google Scholar 

  • Gibson, B.E., and Peterson, C., 1984, Aging decreases oxidative metabolism and the release and synthesis of acetylcholine, J. Neurochem. 37: 978–984.

    Article  Google Scholar 

  • Ginsberg, M.D., Mela, L., Wrobel-Kuhl, K., and Reivich, M., 1977, Mitochondrial metabolism following bilateral cerebral ischemia in the gerbil, Ann. Neurology, I: 519–527.

    Article  Google Scholar 

  • Gionet, T.X., Thomas, J.D., Warner, D.S., Goodlet, C.R., Wasserman, E.A., and West, J.R., 1991, Forebrain ischemia induces selective behavioral impairments associated with hippocampal injury in rats, Stroke 22: 1040–1047.

    Article  PubMed  CAS  Google Scholar 

  • Giulian, D., Vaca, K., and Corpuz, M., 1993, Brain glia release factors with opposing actions upon neuronal survival, J. Neurosci. 13: 29–37.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Lima, F., and Garrosa, M., 1991, Quantitative histochemistry of cytochrome oxidase in rat brain, Neuro-sci. Lett. 123: 251–253.

    Article  CAS  Google Scholar 

  • Graham, D., I., Gentleman, S. M., Lynch, A., and Roberts, G. W., 1995, Distribution of beta-amyloid protein in the brain following severe brain injury, Neuropathol. Appl. Neurobiol. 21: 27–34.

    CAS  Google Scholar 

  • Grubb, R., Raichle, M., Gado, M., Eichling, J., and Hughes, C., 1977, Cerebral blood flow, oxygen utilization and blood volume in dementia, Neurol. 27: 905–910.

    Article  Google Scholar 

  • Guthrie, P.B., Segal, M., and Kater, S.B., 1991, Independent regulation of calcium revealed by imaging dendritic spines, Nature 354: 76–80.

    Article  PubMed  CAS  Google Scholar 

  • Hall, Z.W., 1992, An Introduction to Molecular Neurobiology, Sinauer Ass.: MA.

    Google Scholar 

  • Hao, C., Guilber, L.J., and Federoff, S., 1990. Production of colony stimulating factor-1 (CSF-1) by mouse astro-glia in vitro, J. Neurosci. Res. 27: 314–323.

    Article  PubMed  CAS  Google Scholar 

  • Hevner, R.F., Duff, R.S., and Wong-Riley, M.T.T., 1992, Coordination of ATP production and consumption in brain: parallel regulation of cytochrome oxidase and Na’,KC-ATPase, Neurosci. Lett. 138: 188–192.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer, S., 1991, Abnormalities of glucose metabolism in Alzheimer’s disease, Ann. New York Acad. Sci. 640: 53–58.

    CAS  Google Scholar 

  • Hoyer, S., 1990, Brain glucose and energy metabolism during normal aging, Aging 2: 245–258.

    PubMed  CAS  Google Scholar 

  • Hoyer, S., and Krier, C., 1986, Ischemia and the aging brain: studies on glucose and energy metabolism in rat cerebral cortex, Neurobio Aging 7: 23–29.

    Article  CAS  Google Scholar 

  • Hoyer, S., 1996, Oxidative metabolism deficiencies in brains of patients with Alzheimer’s disease, Acta Neurol. Scand. Supp. 165: 18–24.

    CAS  Google Scholar 

  • Hsu, M., and Buzsake, G., 1993, Vulnerability of mossy fiber targets in the rat hippocampus to forebrain ischemia, J. Neurosci. 13: 3964–3979.

    PubMed  CAS  Google Scholar 

  • Ingram, D.K., London, E.D., and Goodrick, C.L., 1981, Age and neurochemical correlates of radial maze performances in rats, Neurobiol. Aging, 2: 41–47.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, N., Korematsu, K., Oyama, T., Yamada, K., Nagahiro, S., and Ushio, Y., 1996, Cytochrome oxidase activity during acute focal ischaemia in rat brain, Acta Neurochir. 138: 1126–1131.

    Article  PubMed  CAS  Google Scholar 

  • lshimaru, H., Takahashi, A., Ikarashi, Y., and Maruyama, Y., 1995, Pentobarbital protects against CA 1 pyramidal cell death but not dysfunction of hppocampal cholinergic neurons following transient ischemia, Brain Res. 673: 112–118.

    Article  Google Scholar 

  • Jaspers, R.M.A., Block, F., Heim, C., and Sontag, K.H., Spatial learning is affected by transient occlusion of common carotid arteries (2V0): comparison of behavioral and histopathological changes after 2V0 and fourvessel-occlusion in rats, Neurosci. Lett. 117: 149–53.

    Google Scholar 

  • Jendroska, K., Cervos-Navarro, J., and Poewe, W., 1993, Deposition of beta-amyloid associated with cerebral hypoxia, Clin. Neuropathol. 12: 252.

    Google Scholar 

  • Jones, T.H., Morawetz, R.B., Crowell, R.M., Marcoux, F.W., Fitzgibbon, S.J., De Girolami, U., and Ojemann, R.G., 1981, Thresholds of focal cerebral ischemia in awake monkeys, J. Neurosurg. 54: 773–782.

    Article  PubMed  CAS  Google Scholar 

  • Jun, C.D., Choi, B.M., Kim, H.M., and Chung, H.T., 1995, Involvement of protein kinase C during taxol-induced activation of murine peritoneal macrophages, J. Immunol. 154: 6541–7.

    PubMed  CAS  Google Scholar 

  • Kalaria, R.N., Cohen. D.L., and Premkumar, R.D., 1996, Apolipoprotein E alleles and brain vascular pathology in Alzheimer’s disease, Ann. N.Y Acad. Sci. 777: 266–271.

    Article  CAS  Google Scholar 

  • Kalaria, R.N., 1992, The blood-brain barrier and cerebral microcirculation, Cerebrovasc. Brain Met. Rev., 4: 226–260.

    CAS  Google Scholar 

  • Kaplan, B., Brint, S., Tanabe, J., Jacewicz, M., Wang, X-J, and Pulsinelli, W., 1991, Temporal thresholds for neo-cortical infarction in rats subjected to reversible focal cerebral ischemia, Stroke, 22: 1032–39.

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann, H., and Ransom, B.R., (ed.), 1995, Neuroglia, Oxford Press: New York.

    Google Scholar 

  • Kirino, T., 1982, Delayed neuronal death in the gerbil hippocampus, Brain Res. 239: 57–69.

    Article  PubMed  CAS  Google Scholar 

  • Kish, S.J., Bergeron, C., Rajput, A., Dozic, S., Mastrogia-Como, F., Chang, L.J., Wilson, J.M., and Distefano, L. M., Nobrega, J. N., 1992, Brain cytochrome oxidase in Alzheimer’s disease, J. Neurochem. 59: 776–779.

    CAS  Google Scholar 

  • Kish, S.J., Bergeron, C., Rajput, A., Dozic, S., Mastrogiacomo, F., Chang, L-J., Wilson, J.M., DiStefano, L.M., and Nobrega, J.N., 1992, Brain cytochrome oxidase in Alzheimer’s disease, J. Neurochem. 59: 776–779.

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa, K., Matsumoto, M., Niinobe, M., Mioshiba, K., Hata, R., Ueda, H., Handa, N., Fukunaga, R., Isaka, Y., Kimura, K., and Kamada, T., 1989, Microtubule-associated protein 2 as a sensitive marker for cerebral ischemic damage-immunohistochemical investigation of dendritic damage, Neuroscience, 31: 401–411.

    Article  PubMed  CAS  Google Scholar 

  • Kiyota, Y., Miyamoto, M., and Nagaoka, A., 1991, Relationship between brain damage and memory impairment in rats exposed to transient forebrain ischemia, Brain Res. 538: 295–302.

    Article  PubMed  CAS  Google Scholar 

  • Kluver, H., and Bucy, P.C., 1939, Preliminary analysis of function of the temporal lobes in monkeys, Arch. Neurol.Psychiat. 42: 979–1000.

    Article  Google Scholar 

  • Konigsmark, B.E., Murphy, E.A., 1970, Neuronal populations in the human brain, Nature 228: 1335–36.

    Article  PubMed  CAS  Google Scholar 

  • Kosunen, O., Talasniemi, S., and Lehtovirta M., 1995, Relation of coronary artherosclerosis and apolipoprotein E genotypes in Alzheimer’s disease, Stroke 26 (5): 743–748.

    CAS  Google Scholar 

  • Krebs, H.A., Williamson, D.H., Bates, M.W., Page, M.A., and Hawkins, R.A., 1971, The role of ketone bodies in caloric homeostasis, Adv. Enzyme Reg. 9: 3880–3883.

    Google Scholar 

  • Kudo, T., Tada, K., Takeda, M., and Nishimura, T., 1990, Learning impairment and microtubule-associated protein 2 decreases in gerbils under chronic cerebral hypoperfusion, Stroke, 21: 1205–1209.

    Article  PubMed  CAS  Google Scholar 

  • Landfeld, P.W., Hippocampal neurobiological mechanisms of age-related memory dysfunction, Neurobiol. Aging, 9: 571–579.

    Google Scholar 

  • Lassen, N.A., and Ingvar, D.H., 1980, Blood flow studies in the aging normal brain and in senile dementia, in Amaducci, L., Davison, A.N., Antuono, P., (eds): Aging of the Brain and Dementia. Raven Press: New York pp. 91–98.

    Google Scholar 

  • Linville, D.G., and Arneri, S.P., 1991, Cortical cerebral blood flow governed by the basal forebrain: age-related impairments, Neurobiol. Aging 12: 503–510.

    Article  PubMed  CAS  Google Scholar 

  • Marcus, D. L., de Leon, M., Goldman, J., Logan, J., Christman, D., Wolf, A., Fowler, J., Hunter, K., Tsai, J., Pearson, J., and Freedman, M.L., 1989, Altered glucose metabolism in microvessels from patients with Alzheimer’s disease, Ann. Neurol. 26: 91–94.

    Article  PubMed  CAS  Google Scholar 

  • Markesberry, W. R., 1997, Oxidative stress hypothesis in Alzheimer’s disease, Free Rad. Biol. Med. 23: 134–147.

    Article  Google Scholar 

  • Mattson, M. P., 1997, Advances fuel Alzheimer’s conundrum, Nature Gen. 17: 254–256.

    Article  CAS  Google Scholar 

  • Mayberg, T.S., Lam, A.M., Matta, B.F., Domino, K.B., and Winn, H.R., 1995, Ketamine does not increase cerebral blood flow velocity or intracranial pressure during isoflurane/nitrous oxide anesthesia in patients undergoing craniotomy, Neurosurg. Anesth. 81: 84–89.

    CAS  Google Scholar 

  • McGrail, K.M., Phillips, J.M., and Sweadner, K.J., 1991, Immunoflourescent localization of three Na,K-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na,K-ATPase, J. Neurosci., 11: 381–391.

    PubMed  CAS  Google Scholar 

  • Meier-Ruge, W., Bertoni-Freddari C., and Iwangoff, P., 1994, Changes in brain glucose metabolism as a key to the pathogenesis of Alzheimer’s disease, Gerontol. 40: 246–252.

    Article  CAS  Google Scholar 

  • Meier-Ruge, W., and Bertoni-Freddari, C., 1996, The significance of glucose turnover in the brain in the pathogenetic mechanisms of Alzheimer’s disease, Rev. in Neurosci. 7 1–19.

    Google Scholar 

  • Milner, B., 1974, Hemispheric specialization: scope and limits. In F.O. Schmitt and F.G. Worden (Eds.), The Neurosciences: Third study program, MIT Press: Cambridge, pp. 75–89.

    Google Scholar 

  • Miyazawa, T., Bonnekoh, P., and Hossman, K.A., 1993, Temperature effect on immunostaining of microtubule-asso-ciated protein 2 and synatpophysin after 30 minutes forebrain ischemia in rat, Acta Neuropath, 85(5): 526–32.

    Google Scholar 

  • Morris, R.G.M., 1984, Developments of a water maze procedure for studying spatial learning in the rat, J. Neurosci. Meth. 11: 47–60.

    Article  CAS  Google Scholar 

  • Murphy, S., 1993, Asuncytes: Pharmacology and function, Academic Press: NY.

    Google Scholar 

  • Mutisya, E.M., Bowling, A.C., and Beal, M.F., 1994, Cortical cytochrome oxidase activity is reduced in Alzheimer’s disease, J. Neurochem. 63: 2179–2184.

    Article  PubMed  CAS  Google Scholar 

  • Nagata, K. Buchan, R. J., Yokoyama, E., Kondoh, Y., Sato, M., Terashi, H., Satoh, Y., Watahiki, Y., Senova, M., Hirata, Y., and Hatazawa, J., 1997, Misery perfusion with preserved vascular reactivity in Alzheimer’s disease, Ann. N. Y Acad. Sci. 826: 272–281.

    CAS  Google Scholar 

  • Nakahara, I., Kikuchi, H., Taki, W., Nishi, S., Kito, M., Yonekawa, Y., Goto, Y., and Ogata, N., 1991, Degradation of mitochondria) phospholipids during experimental cerebral ischemia in rats, J. Neurochem. 57: 839–844.

    Article  PubMed  CAS  Google Scholar 

  • Ni, J-W., Matsumoto, K., Li, H-B., Murakami, Y, and Watanabe, H., 1995, Neuronal damage and decrease of central acetylcholine level following permanent occlusion of bilateral common carotid arteries in rat, Brain Res. 673: 290–296.

    Article  PubMed  CAS  Google Scholar 

  • Ni, J-W., Ohta, H., Matsumoto, K., and Watanabe, H., 1994, Progressive cognitive impairment following chronic cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries in rats, Brain Res. 653: 231–36.

    Article  PubMed  CAS  Google Scholar 

  • Obrist, W.D., Chivian, E., Cronquist, S., and ingvar, D.H., 1970, Regional cerebral blood flow in senile and presenile dementia, Neurol. 20: 315–22.

    Article  CAS  Google Scholar 

  • Ohata, M., Sundaram, U., Fredericks, W.R., London, E.D., and Rapoport, S.1., 1981, Regional cerebral blood flow during development and ageing of the rat brain, Brain 104: 319–332.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, G.M., Scheel-Kruger, J., Moller, A., and Jensen, L.H., 1994, Does neuronal damage of CAI related to spatial memory performance of rats subjected to transient forebrain ischemia, Acta Neurol. Scand. 89: 204–209.

    Article  PubMed  CAS  Google Scholar 

  • Olton, D.S., and Papas, B.C., 1979, Spatial memory and hippocampal function. Neuropsychologia, 17: 669–682.

    Article  PubMed  CAS  Google Scholar 

  • Ordy, J.M., Thomas, G.J., Volpe, B.T., Dunlap, W.P., and Colombo, P.M., 1988, An animal model of human-type memory loss based on aging, lesion, forebrain ischemia, and drug studies with the rat, Neurobiol. Aging, 9: 667–683.

    Article  PubMed  CAS  Google Scholar 

  • Owen, O.E., Morgan, A.P., Kemp, H.G., Sullivan, J.M., Herrara, M.G., and Cahill, G.F. Jr., 1967, Brain metabolism during fasting, J. Clin. Invest. 46: 1589–1595.

    Article  PubMed  CAS  Google Scholar 

  • Ozawa, K., Seta, K., Araki, H., and Handa, H., 1967, The effect of ischemia on mitochondrial metabolism, J. Biochem. 61: 512–514.

    PubMed  CAS  Google Scholar 

  • O’Keefe, J., and Nadel, L., 1978, The hippocampus as a cognitive map. Oxford University Press: London.

    Google Scholar 

  • Papez, J.W., 1937, A proposed mechanism of emotion, Arch. Neurol. Psychiat. 38: 725–743.

    Article  Google Scholar 

  • Pappas, B.A., de la Torre, J.C., Davidson, C., Keyes, M., and Fortin, T., 1996, Chronic reductions of cerebral blood flow in the adult rat: Late emerging CAI cell loss and memory function, Brain Res. 708: 50–58.

    Article  PubMed  CAS  Google Scholar 

  • Park, J.S., Bateman, M.C., and Goldberg, M.P., 1996, Rapid alterations in dendrite morphology during sublethal hypoxia or glutamate receptor activation, Neurobio. Disease, 3: 215–227.

    Article  CAS  Google Scholar 

  • Parker, W.D., Jr., Filley, C.M., and Parks, J.K., 1990, Cytochrome oxidase deficiency in Alzheimer’s disease, Neurol. 40: 1302–1303.

    Article  Google Scholar 

  • Parker, W.D., Jr., Parks, J., Filley, C.M., and Klein-Schmidt-Demasters, B.K., 1994, Electron transport chain defects in Alzheimer’s disease brain, Neurol. 44: 1090–1096.

    Article  Google Scholar 

  • Patel, M.S., 1977, Age-dependent changes in oxidative metabolism in rat brain, J. Geront. 32: 643–646.

    Article  PubMed  CAS  Google Scholar 

  • Perry, E.K., 1986, The cholinergic hypothesis: 10 years on, Brain Med. Bull. 42: 63–69.

    CAS  Google Scholar 

  • Petito, C.K., Morgello, S., Felix, J.C., and Lesser, M.L., 1990, The two patterns of reacitve astrocytosis in postischemic rat brain, J. Cerebr. Blood Flow, 10: 850–859.

    Article  CAS  Google Scholar 

  • Pulsinelli, W.A., Brierley, J.B., and Plum, F., 1982, Temporal profile of neuronal damage in a model of transient forebrain ischemia, Ann. Neurol., 11: 491–498.

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson, D.X., Brandt, J., Martin, D.B., and Folstein, M.F., 1995, Head injury as a risk factor in Alzheimer’s disease, Brain Injury 9: 213–219.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, G.W., Gentleman, S.M., Lynch, A., Murray, L., Landon, M., and Graham, D.I., 1994, Beta amyloid protein depostion in the brain after severe head injury: Implications for the pathogenesis of Alzheimer’s disease, J. Neurol. Neurosurg. Psychiatry 57: 419–425.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, R.L., Meyer, J.S., Mortel, K.F., Mahurin, R.K., and Judd, B.W., 1986, Decreased cerebral blood flow precedes multiinfarct dementia, but follows senile dementia of Alzheimer’s type, Neurol. 36: I - 6.

    Google Scholar 

  • Saunders, A.M., Strittmatter, W.J., and Schmechel, D., 1993, Association of apolipoprotein E allele e4 with lateonset familial and sporadic Alzheimer’s disease, Neurol. 43: 1467–1472.

    Article  CAS  Google Scholar 

  • Schmidt-Kastner, E., Fliss, H., and Hakim, A.M., 1997, Subtle neuronal death in striatum after short forebrain ischemia in rats detected by in situ end-labeling for DNA damage, Stroke 28: 163–170.

    Article  PubMed  CAS  Google Scholar 

  • Sekhon, L.H.S., Morgan, M.K., Spence, I., Weber, N.C., 1994, Chronic cerebral hypoperfusion and impaired neuronal function in rats, Stroke 25: 1022–27.

    Article  PubMed  CAS  Google Scholar 

  • Sekhon, L.H.S., Spence, I., Morgan, M.K., and Weyer, N.C., 1997, Chronic cerebral hypoperfusion inhibits calcium-induced long-term potentiation in rats, Stroke 28: 1043–1048.

    Article  PubMed  CAS  Google Scholar 

  • Selmen, W.R., Crumrine, R.C., Ricci, A.J., LaManna, J.C., Ratcheson, R.A., and Lust, W.D., 1990, Impaired metabolic recovery with increasing periods of middle cererbral artery occlusion in rats, Stroke 21: 467–71.

    Article  Google Scholar 

  • Shaw T.G., Mortel K.F., Meyer J.S., Rogers R.L., Hardenberg J., and Cutaia M.M., 1984, Cerebral blood flow changes in benign aging and cerebrovascular disease, Neurol. 34: 855–862.

    Article  CAS  Google Scholar 

  • Siesjö, B.K., 1978, Brain energy metabolism, John Wiley and Sons, New York.

    Google Scholar 

  • Simonian, N.A., and Hyman, B.T., 1995, Functional alterations in neural circuits in Alzheimer’s disease, Neurobiol. Aging 16: 305–309.

    Article  PubMed  CAS  Google Scholar 

  • Simonian, N.A., and Hyman, B.T., 1994, Functional alterations in Alzheimer’s disease: Selective loss of mitochondrial-encoded cytochrome oxidase mRNA in the hippocampal formation, J Neuropath. Exp. Neurol. 53: 508–512.

    Article  PubMed  CAS  Google Scholar 

  • Sims, N. R., 1996, Energy metabolism, oxidative stress and neuronal degeneration in Alzheimer’s disease, Neurodegeneration 5: 435–440.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D.H., Okiyama, K., Thomas, M.J., Claussen, B., and McIntosh, T.K., 1991, Evaluation of memory dysfunction following experimental brain injury using the Morris water maze, J. Neurotrauma 8: 259–269.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M.L., 1988, Recall of spatial location by the amnesic patient H. M., Brain Cog. 7: 178–183.

    Article  CAS  Google Scholar 

  • Sonsalla, P.K., Manzino, L., Sinton, C.M., Liang, C.L., German, D.C., and Zeevalk, G.D., 1997, Inhibition of striatal energy metabolism produces cell loss in the ipsilateral substantia nigra, Brain Res. 773: 223–226.

    Article  PubMed  CAS  Google Scholar 

  • Sparks, D.L., Hunsaker, J.C., Scheff, S., Kryscio, R., Henson, J.L., and Markesberry, W.R., 1990, Cortical senile plaques in coronary artery disease, aging and Alzheimer’s disease. Neurobiol. Aging 11: 601–607.

    Article  PubMed  CAS  Google Scholar 

  • Squire, L.R., Shimamaru, A.P., and Amaral, D.G., 1986, Memory and hippocampus, In Neural Models of Plasticity, Byrne, J., Berry, W., (eds), Academic Press: New York pp. 208–239.

    Google Scholar 

  • Sutherland, R.J., Wishaw, I.Q., and Kolb, B., 1988, Contributions of the cingulate cortex to two forms of spatial learning and memory, J. Neurosci. 8: 1863–1872.

    PubMed  CAS  Google Scholar 

  • Swerdlow, R., Marcus, D.L., Landman, J., Kooby, D., Frey, W., and Freedman, M.L., 1993, Brain glucose metabolism in Alzheimer’s disease, Amer. J. Med. Sci. 308: 141–144.

    Article  Google Scholar 

  • Symon, L., Pasztor, E., and Branston, N.M., 1974, The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: An experimental study by the technique of hydrogen clearance in baboons, Stroke 5: 355–364.

    Article  PubMed  CAS  Google Scholar 

  • Szatkowski, M., and Attwell, D., 1994, Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms, TINS, 17: 359–365.

    PubMed  CAS  Google Scholar 

  • Tachibana, H., Meyer, J.S., Kitagawa, Y., Rogers, R.L., Okayasu, H., and Mortel, K.F., 1984, Effects of aging on cerebral blood flow in dementia compared to normals, J. Am. Geriatr Soc. 32: 114–120.

    PubMed  CAS  Google Scholar 

  • Tachibana, H., Meyer, J.S., Okayasu, H., Shaw, T.G., Kandula, P., and Rogers, R.L., 1984, Xenon contrast CTCBF scanning of the brain differentiates normal age-related changes from multi-infarct dementia and senile dementia of Alzheimer’s type, J. Geron. 39: 415–23.

    Article  CAS  Google Scholar 

  • Tanaka, K., Ogawa, N., Asanuma, M., Kondo, Y., and Nomura, M., 1996, Relationship between cholinergic dysfunction and discrimination learning disabilities in Wistar rats following chronic cerebral hypoperfusion, Brain Res. 729: 55–65.

    Article  PubMed  CAS  Google Scholar 

  • Terry, R.D., and Wisniewski, H.M., 1972, Ultrastructure of senile dementia and of experimental analogs, In: Aging and the Brain, ed.: Gaitz, C. M., Raven Press: New York 89–116.

    Google Scholar 

  • Tsuchiya, T., Sako, K., Yura, S., and Yonemasu, Y., 1992, Cerebral flood flow and histopathological changes following permanent bilateral carotid artery ligation in Wistar rats, Exp. Brain Res. 89: 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya, T., Sako, K., Yura, S., and Yonemasu, Y., 1993, Local cerebral glucose utilisation following acute and chronic bilateral carotid artery ligation in Wistar rats: relation to changes in local cererbral blood flow, Exp. Brain Res. 95: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Van Hoesen, G.W., and Hyman, B., 1990, Hippocampal formation: anatomy and patterns of pathology in Alzheimer’s disease, Progr. Brain Res. 83: 445–447.

    Article  Google Scholar 

  • Venarucci, D., 1994, ApoE phenotype in atheromatous plaques, Stroke 25: 2296–2297.

    Article  PubMed  CAS  Google Scholar 

  • Vibulsreth, S., Hefti, F., Ginsberg, M.D., Dietrich, W.D., and Busto, R., 1987, Astrocytes protect cultured neurons from degeneration induced by anoxia, Brain Res. 422: 303–311.

    Article  PubMed  CAS  Google Scholar 

  • Wakiti, H., Tomimoto, H., and Kimaru, J., 1994, Glial activation and white matter changes in rat brain induced by chronic cerebral hypoperfusion, Acta Neuropath. 87: 484–492.

    Article  Google Scholar 

  • Williams, J.H., Errington, M.L., Lynch, M.A., and Bliss, T.V.P., 1989, Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus, Nature, 341: 739–742.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski. H.M., and Terry, R.D., 1973, Morphology of the aging brain, human and animal, Prog. Brain Res. 40: 167–186.

    Article  PubMed  CAS  Google Scholar 

  • Wong-Riley, M.T.T., 1989, Cytochrome oxidase: an endogenous metabolic marker for neuronal activity, TINS 12: 94–101.

    PubMed  CAS  Google Scholar 

  • Yager, J.Y., Shuaib, A., and Thomill, J., 1996, The effect of age on susceptibility to brain damage in a model of global hemispheric hypoxia-ischemia, Brain Res. Dey. Brain Res. 93: 143–154.

    Article  CAS  Google Scholar 

  • Yamaguchi, F., Meyer, J.S., Yamamoto, M., Sakai, F., and Shaw, T., 1980, Noninvasive regional cerebral blood flow measurements in dementia, Arch. Neurol. 37: 410–8.

    Article  PubMed  CAS  Google Scholar 

  • Zemcov, A., Risberg, J. Barclay, L.L., and Blass, J.P., 1984, Diagnosis of Alzheimer’s dementia and multi-infarct dementia by rCBF compared to clinical classification, Monogr. Neural Sci. 2: 104–6.

    Google Scholar 

  • Zola-Morgan, S., Squire, L.R., and Amaral, D.G., 1986, Human amnesia and the medial temporal region: Enduring memory impairment following a bilateral lesion limited to the CAI field of the hippocampus, J. Neuro-sci. 6: 2950–2967.

    CAS  Google Scholar 

  • Zola-Morgan, S., Squire, L.R., and Amaral, D.G., 1989, Lesions of the hippocampal formation but not lesions of the fornix or the mammillary nuclei produce long-lasting memory impairment in monkeys, J. Neurosci. 9: 898–913.

    PubMed  CAS  Google Scholar 

  • Zola-Morgan, S., and Squire, L.R., 1986, Memory impairment in monkeys following lesions limited to the hippo-campus, Behay. Neurosci. 100: 155–160.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abdollahian, N.P., Cada, A., Gonzalez-Lima, F., de la Torre, J.C. (1998). Cytochrome Oxidase. In: Gonzalez-Lima, F. (eds) Cytochrome Oxidase in Neuronal Metabolism and Alzheimer’s Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9936-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9936-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9938-5

  • Online ISBN: 978-1-4757-9936-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics