Skip to main content

Magnetic Circular Dichroism in Photoemission from Rare-Earth Materials: Basic Concepts and Applications

  • Chapter
Core Level Spectroscopies for Magnetic Phenomena

Part of the book series: NATO ASI Series ((NSSB,volume 345))

  • 114 Accesses

Abstract

Magneto-optical Kerr effect and Faraday effect provide the basis of established methods for studying the magnetic properties of matter by polarized light in the visible spectral range. It was only quite recently that an analogous effect in the x-ray region, magnetic circular dichroism in x-ray absorption, was first observed by Gisela Schütz et al. for the near-edge fine structure at the K edge of ferromagnetic iron.1 Later on, magnetic circular x-ray dichroism (MCXD) was also observed at the LII,III thresholds of rare-earths2 and 3d transition metals,3 opening up the possibility for element-specific analyses of magnetic moments in compound magnets and multilayers. Today MCXD is mainly used as a tool at the LII,III x-ray absorption thresholds of 3d transition metals, where relatively large MCD asymmetries in the white lines upon reversal of either sample magnetization or circular polarization (photon spin) of the absorbed light are observed. MCXD can be understood in the simplest way in a one-electron picture by taking the spin polarization of the excited electron due to the inner-shell spin-orbit coupling (Fano effect4) into account as well as the spin-split density of final states at and above the Fermi level.5 More rigorous theoretical treatments have been given,6,7,8 which allow to recognize the three important ingredients for magnetic circular dichroism: (i) Exchange interaction as the driving force for long-range spin order; (ii) use of circularly polarized light with preferential propagation along the magnetic quantization axis; (iii) spin-orbit interaction providing the mechanism for an effective coupling between the angular momentum of the circularly polarized photon and the magnetically ordered electron spins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, and G. Materlik, Phys. Rev. Lett. 58: 737 (1987).

    Article  ADS  Google Scholar 

  2. G. Schütz, M. Knülle, R. Wienke, W. Wilhelm, W. Wagner, P. Kienle, and R. Frahm, Z. Physik B 73: 67 (1988).

    Article  ADS  Google Scholar 

  3. C.T. Chen, F. Sette, Y. Ma, and S. Modesti, Phys. Rev. B 42: 7262 (1990).

    Article  ADS  Google Scholar 

  4. U. Fano, Phys. Rev. 178: 131 (1969).

    Article  ADS  Google Scholar 

  5. G. Schütz, Phys. Blätter 46: 475 (1990).

    Article  Google Scholar 

  6. H. Ebert, P. Strange, and B.L. Gyorffy, Z. Phys. B 73: 77 (1988).

    Article  ADS  Google Scholar 

  7. P. Carra and M. Altarelli, Phys. Rev. Lett. 64: 1286 (1990).

    Article  ADS  Google Scholar 

  8. B.T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett. 68: 1943 (1992).

    Article  ADS  Google Scholar 

  9. L. Baumgarten, CM. Schneider, H. Petersen, F. Schäfers, and J. Kirschner, Phys. Rev. Lett. 65: 492 (1990).

    Article  ADS  Google Scholar 

  10. H. Ebert, L. Baumgarten, CM. Schneider, and J. Kirschner, Phys. Rev. B 44: 4406 (1991).

    Article  ADS  Google Scholar 

  11. CM. Schneider, M.S. Hammond, P. Schuster, A. Cebollada, R. Miranda, and J. Kirschner, Phys. Rev. B 44: 12066 (1991).

    Article  ADS  Google Scholar 

  12. E. Navas, K. Starke, C. Laubschat, E. Weschke, and G. Kaindl, Phys. Rev. B 48 — Rap. Commun.: 14753(1993).

    Article  ADS  Google Scholar 

  13. A.V. Fedorov, A. Höhr, E. Weschke, K. Starke, V.K. Adamchuk, and G. Kaindl, Phys. Rev B 49 — Rap. Commun.: 5117 (1994); and references therein.

    Article  ADS  Google Scholar 

  14. J. Bahrdt, A. Gaupp, W. Gudat, M. Mast, K. Molter, W.B. Peatman, M. Scheer, Th. Schroeter, and Ch. Wang, Rev. Sci. Instrum. 63: 339 (1992).

    Article  ADS  Google Scholar 

  15. H. Petersen, M. Willmann, F. Schäfers, and W. Gudat, Nucl. Instrum. Methods A 333: 594 (1993).

    Article  ADS  Google Scholar 

  16. S. Di Fonzo, W. Jark, F. Schaefers, H. Petersen, A. Gaupp, and J.H. Underwood, Appl. Optics 33, 2624 (1994).

    Article  ADS  Google Scholar 

  17. M. Born and E. Wolf. “Principles of Optics”, Pergamon Press, London (1959).

    MATH  Google Scholar 

  18. B.J. Beaudry and K.A. Gschneidner, in: “Handbook of Physics and Chemistry of Rare Earths”, Vol. 1, K.A. Gschneidner and L.R. Eyring eds., North-Holland, Amsterdam (1978).

    Google Scholar 

  19. J. Kolaczkiewicz and E. Bauer, Surf. Sci. 175: 487 (1986).

    Article  ADS  Google Scholar 

  20. M. Farle, K. Baberschke, U. Stetter, A. Aspelmeier, and F. Gerhardter, Phys. Rev. B 47: 11571 (1993).

    Article  ADS  Google Scholar 

  21. K. Starke, K. Ertl, and V. Dose, Phys. Rev. B 46: 9709 (1992).

    Article  ADS  Google Scholar 

  22. K. Starke, E. Navas, L. Baumgarten, and G. Kaindl, Phys. Rev. B 48 — Rap. Commun.: 1329(1993).

    Article  ADS  Google Scholar 

  23. G. van der Laan and B.T. Thole, Phys. Rev. B 48: 210 (1993).

    Article  ADS  Google Scholar 

  24. G. van der Laan, private communication.

    Google Scholar 

  25. K. Starke, L. Baumgarten, E. Arenholz, E. Navas, and G. Kaindl, Phys. Rev. B — Rap. Commun.: in print (1994).

    Google Scholar 

  26. E. Navas, E. Arenholz, K. Starke, and G Kaindl, to be published.

    Google Scholar 

  27. J. Sugar, Phys. Rev. B 5: 1785 (1972).

    Article  ADS  Google Scholar 

  28. C. Laubschat, E. Weschke, G. Kalkowski, and G. Kaindl, Physica Scripta 41: 124 (1990).

    Article  ADS  Google Scholar 

  29. F. Gerken, J. Barth, and C. Kunz, Phys. Rev. Lett. 47: 993 (1981).

    Article  ADS  Google Scholar 

  30. L. Baumgarten, E. Arenholz, E. Navas, K. Starke, and G. Kaindl, to be published.

    Google Scholar 

  31. J.L. Dehmer, A.F. Starace, U. Fano, J. Sugar, and J.W. Cooper, Phys. Rev. Lett. 26: 1521 (1971).

    Article  ADS  Google Scholar 

  32. S. Imada and T. Jo, J. Phys. Soc. Jap. 59: 3358 (1990).

    Article  ADS  Google Scholar 

  33. D. Weiler, S.F. Alvarado, W. Gudat, K. Schröder, and M. Campagna, Phys. Rev. Lett. 54: 1555(1985).

    Article  ADS  Google Scholar 

  34. G.A. Mulhollan, K. Garrison, and J.L. Erskine, Phys. Rev. Lett. 69: 3240 (1992).

    Article  ADS  Google Scholar 

  35. E. Vescovo, C. Carbone, and O. Rader, Phys. Rev. B 48 — Rap. Commun.: 7731 (1993).

    Article  ADS  Google Scholar 

  36. S. Doniach and M. Sunjic, J. Phys. C 3: 285 (1970).

    Article  ADS  Google Scholar 

  37. H. Tang, D. Weller, TG. Walker, J.C. Scott, C. Chappert, H. Hopster, AW. Pang, D.S. Dessau, and D.P. Pappas, Phys. Rev. Lett. 71: 444 (1993).

    Article  ADS  Google Scholar 

  38. C. Rau, Appl. Phys. A 49: 579 (1989).

    Article  ADS  Google Scholar 

  39. Y.U. Idzerda and D.E. Ramaker, Mat. Res. Soc. Symp. Proc. 313: 659 (1993).

    Article  Google Scholar 

  40. J. Daval and B. Bechevet, J. Magn. Magn. Mater. 129: 98 (1994).

    Article  ADS  Google Scholar 

  41. E. Arenholz, K. Starke, E. Navas, and G. Kaindl, to be published.

    Google Scholar 

  42. A.R. Miedema, P.F. de Chatel, and F.R. de Boer, Physica B (Amsterdam) 100: 1 (1980).

    Article  ADS  Google Scholar 

  43. A. Stenborg, J.N. Andersen, O. Björneholm, A. Nilsson, and N. Mârtensson, Phys. Rev. Lett. 63: 187(1989).

    Article  ADS  Google Scholar 

  44. A. Stenborg, O. Björneholm, A. Nilsson, N. Mârtensson, J.N. Andersen, and C. Wigren, Surf. Sci. 211/212:470(1989).

    Article  ADS  Google Scholar 

  45. J. Mathon and SB. Ahmad, Phys. Rev. B 37 — Rap. Commun.: 660 (1988).

    Article  ADS  Google Scholar 

  46. J. Stöhr, Y. Wu, M.G. Samant, B.D. Hermsmeier, G. Harp, S. Koranda, D. Dunham, and B.P. Tonner, Science 259: 658 (1993).

    ADS  Google Scholar 

  47. T. Kachel, W. Gudat, and K. Holldack, Appl. Phys. Lett. 64: 655 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaindl, G., Navas, E., Arenholz, E., Baumgarten, L., Starke, K. (1995). Magnetic Circular Dichroism in Photoemission from Rare-Earth Materials: Basic Concepts and Applications. In: Bagus, P.S., Pacchioni, G., Parmigiani, F. (eds) Core Level Spectroscopies for Magnetic Phenomena. NATO ASI Series, vol 345. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9871-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9871-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9873-9

  • Online ISBN: 978-1-4757-9871-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics