Skip to main content
  • 88 Accesses

Abstract

’t Hooft (1976) observed that the standard model does not absolutely conserve baryon and lepton number due to the Adler-Bell-Jackiw anomaly The process ‘t Hooft considered was spontaneous fermion number violation due to instanton induced transitions. Attracting much attention Ringwald (1990) recently argued, that such tunnelling transitions between topologically distinct vacua might indeed be observable at high energies at future accelerators (Mattis and Mottola, 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiba, T., Kikuchi H., and Yanagida, T., (1988), Static minimum-energy path from a vacuum to a sphaleron in the Weinberg-Salam model, Phys. Rev. D38: 1937.

    Google Scholar 

  • Akiba, T., Kikuchi H., and Yanagida, T., (1989), The free energy of the sphaleron in the Weinberg-Salam model, Phys. Rev. D40: 179.

    Google Scholar 

  • Arnold, P., and McLerran, L., (1987), Sphalerons, small fluctuations, and baryon-number violation in electroweak theory, Phys. Rev. D36: 581.

    Google Scholar 

  • Arnold, P., and McLerran, L., (1988), The sphaleron strikes back: A response to objections to the sphaleron approximation, Phys. Rev. D37: 1020.

    Article  Google Scholar 

  • Baacke, J., and Lange, H., (1992), Stability analysis of the electroweak sphaleron, Mod. Phys. Lett. A7: 1455.

    MathSciNet  MATH  Google Scholar 

  • Boguta, J., and Kunz, J., (1985), Hadroids and sphalerons, Phys. Lett. B154: 407.

    MathSciNet  Google Scholar 

  • Brihaye, Y., and Kunz, J., (1989), A sequence of new classical solutions in the Weinberg-Salam model, Mod. Phys. Lett. A4: 2723.

    MathSciNet  Google Scholar 

  • Brihaye, Y., Giler, S., Kosinski, P., and Kunz, J., (1989), Configuration space around the sphaleron, Phys. Rev. D42: 2846.

    Google Scholar 

  • Brihaye, Y., and Kunz, J., (1990), Normal modes around the SU(2) sphalerons, Phys. Lett. B249: 90.

    MathSciNet  Google Scholar 

  • Brihaye, Y., Kleihaus, B., and Kunz, J. (1992), Sphalerons at finite mixing angle and singular gauges, Preprint CERN-TH.6664/92.

    Google Scholar 

  • Brihaye, Y., and Kunz, J., (1992), Sphalerons, deformed sphalerons and normal modes, Acta Physica Polonica B23: 513.

    Google Scholar 

  • Brihaye, Y., and Kunz, J., (1993), Fermions in the background field of the sphaleron barrier, in preparation.

    Google Scholar 

  • Carson, L., Li, X., McLerran, L., and Wang, R.-T., (1990), Exact computation of the small-fluctuation determinant around a sphaleron, Phys. Rev. D42: 2127.

    Google Scholar 

  • Dashen, R. F., Hasslacher, B., and Neveu, A., (1974), Nonperturbative methods and extended-hadron models in field theory. III. Four-dimensional non-abelian models, Phys. Rev. D12: 4138.

    Google Scholar 

  • G. ‘t Hooft, G., (1976), Symmetry breaking through Bell-Jackiw Anomalies, Phys. Rev. Lett. 37: 8.

    Google Scholar 

  • Kleihaus, B., Kunz, J., and Brihaye, Y., (1991), The electroweak sphaleron at physical mixing angle, Phys. Lett. B273: 100.

    Article  Google Scholar 

  • Klinkhamer, F. R., (1990), Sphalerons, deformed sphalerons and configuration space, Phys. Lett. B236: 187

    Article  MathSciNet  Google Scholar 

  • Klinkhamer, F. R., and Manton, N. S., (1984), A saddle-point solution in the Weinberg-Salam theory, Phys. Rev. D30: 2212.

    Article  ADS  Google Scholar 

  • Kolb, E. W., and Turner, M. S., (1990), “The Early Universe”, Addison-Wesley Publishing Company, Redwood City.

    Google Scholar 

  • Kunz, J., and Brihaye, Y., (1989), New sphalerons in the Weinberg-Salam theory, Phys. Lett. B216: 353.

    Article  MathSciNet  Google Scholar 

  • Kunz, J., Kleihaus, B., and Brihaye, Y., (1992), Sphalerons at finite mixing angle, Phys. Rev. D46: 3587.

    ADS  Google Scholar 

  • Kuzmin, V. A., Rubakov, V. A., and Shaposhnikov, M. E., (1985), On anomalous electroweak baryon-number non-conservation in the early universe, Phys. Lett. B155: 36.

    Article  Google Scholar 

  • Kuzmin, V. A., Rubakov, V. A., and Shaposhnikov, M. E., (1987), Anomalous electroweak baryon number non-conservation and GUT mechanism for baryogenesis, Phys. Lett. B191: 171.

    Google Scholar 

  • Manton, N. S., (1983), Topology in the Weinberg-Salam theory, Phys. Rev. D28: 2019.

    MathSciNet  Google Scholar 

  • Mattis, M., and Mottola, E., (1990), eds., “Baryon Number Violation at the SSC?”, World Scientific, Singapore.

    Google Scholar 

  • McLerran, L., Shaposhnikov, M., Turok, N., and Voloshin, M., (1991), Why the baryon asymmetry of the universe is 10–10, Phys. Lett. /3256: 451.

    Google Scholar 

  • Nohl, C. R., (1975), Bound-state solutions of the Dirac equation in extended hadron models, Phys. Rev. D12: 1840.

    Google Scholar 

  • Ringwald, A., (1988a), Rate of anomalous electroweak baryon and lepton number violation at finite temperature, Phys. Lett. B201: 510.

    Google Scholar 

  • Ringwald, A., (1988b), Sphaleron and level crossing, Phys. Lett. /3213: 61.

    Google Scholar 

  • Ringwald, A., (1990), High energy breakdown of perturbation theory in the electroweak instanton sector, Nucl. Phys. B330: 1.

    Article  ADS  Google Scholar 

  • Shaposhnikov, M. E., (1987), Baryon asymmetry of the universe in standard electroweak theory, Nucl. Phys. /3287: 757.

    Google Scholar 

  • Shaposhnikov, M. E., (1988), Structure of the high temperature gauge ground state and electroweak production of the baryon asymmetry, Nucl. Phys. B299: 797.

    Article  MathSciNet  ADS  Google Scholar 

  • Shaposhnikov, M. E., (1992), Standard model solution of the baryogenesis problem, Phys. Lett. 13277: 324.

    Google Scholar 

  • Yaffe, L. G., (1989), Static solutions of SU(2)-Higgs theory, Phys. Rev. D40: 3463.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kunz, J., Brihaye, Y. (1994). Sphalerons in the Weak Interactions. In: Goeke, K., Hwang, WY.P., Speth, J. (eds) Contemporary Topics in Medium Energy Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9835-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9835-7_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9837-1

  • Online ISBN: 978-1-4757-9835-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics