Skip to main content

Optical Dephasing of Excitons in III-V Semiconductors

  • Chapter
Coherent Optical Interactions in Semiconductors

Part of the book series: NATO ASI Series ((NSSB,volume 330))

Abstract

Rapid progress in the development of mode-locked laser systems during the past decade has boosted the time resolution attainable in nonlinear optical spectroscopy well below 100 fs. Ti: sapphire lasers which can directly generate pulses as short as 12 fs [1] mark the most recent milestone of this evolution. This new generation of fs solid state lasers surpasses the older colliding-pulse mode-locked (CPM) dye laser [2] by far with respect to output power and stability, and most importantly, by the broad tunability of the fs output between 680–1000 nm. Combining these lasers with frequency converters like harmonic generators [3] or optical parametric oscillators [4] extends the tunability range to the ultraviolet, visible, near and middle infrared regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.T. Asaki, C.-P. Huang, D. Garvey, J. Zhou, H.C. Kapteyn, and M.C. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti: sapphire laser”, Opt. Lett. 18:977 (1993).

    Article  ADS  Google Scholar 

  2. P.F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, and A.J. Schmidt, “Operation of a femtosecond Ti: sapphire solitary laser in the vicinity of zero group-delay dispersion”, Opt. Lett. 18:54 (1993).

    Article  ADS  Google Scholar 

  3. B. Proctor and F. Wise, “Generation of 13-fs pulses from a mode-locked Ti: Al2O3 laser with reduced third-order dispersion”, Appl. Phys. Lett. 62:470 (1993).

    Article  ADS  Google Scholar 

  4. R.L. Fork, B.I. Greene, and C.V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking”, Appl. Phys. Lett. 36:671 (1981).

    Article  ADS  Google Scholar 

  5. J.A. Valdmanis, R.L. Fork, and J.P. Gordon, “Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain”, Opt. Lett. 10:131 (1985).

    Article  ADS  Google Scholar 

  6. P.F. Curley and A.I. Ferguson, “Resonant frequency doubling of a self-starting coupled-cavity, mode-locked Ti: Al2O3 laser”, Opt. Lett. 16:321 (1981).

    Article  ADS  Google Scholar 

  7. Q. Fu, G. Mak, and H.M. van Driel, “High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Ti: Sapphire laser”, Opt. Lett. 17:1006 (1992).

    Article  ADS  Google Scholar 

  8. R.J. Ellingson and C.L. Tang, “High-power, high-repetition-rate femtosecond pulses tunable in the visible”, Opt. Lett. 18:438 (1993).

    Article  ADS  Google Scholar 

  9. B.S. Wherrett, A.L. Smirl, and T.F. Boggess, “Theory of Degenerate Four-Wave-Mixing in Picosecond Excitation-Probe-Experiments”, IEEE J. Quant. Electr. QE19:680 (1983).

    Article  ADS  Google Scholar 

  10. A.L. Smirl, T.F. Boggess, B.S. Wherrett, G.P. Perryman, and A. Miller, “Picosecond Transient Orientational and Concentration Gratings in Germanium”, IEEE J. Quant Electr. QE19:690 (1983).

    Article  ADS  Google Scholar 

  11. H.J. Eichler, P. Günther, and D.W. Pohl, “Laser-Induced Dynamical Grating”, (Springer Verlag, Berlin-Heidelberg-New York, 1980).

    Google Scholar 

  12. I.D. Abella, N.A. Kurnit, and R.S. Hartmann, “Photon echos”, Phys. Rev. 57:391 (1966).

    Article  ADS  Google Scholar 

  13. N.A. Kurnit, I.D. Abella, and S.R. Hartmann, “Observation of photon echo”, Phys. Rev. Lett. 13:567 (1964).

    Article  ADS  Google Scholar 

  14. V. Langer, H. Stolz, and W. von der Osten, “Observation of Quantum Beats in the Resonance Fluorescence of Free Excitons”, Phys. Rev. Lett. 64:854 (1990).

    Article  ADS  Google Scholar 

  15. E.O. Göbel, K. Leo, T.C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J.F. Müller, and K. Köhler, “Quantum Beats of Excitons in Quantum Wells”, Phys. Rev. Lett. 64:1801 (1990).

    Article  ADS  Google Scholar 

  16. B.F. Feuerbacher, J. Kuhl, R. Eccleston, and K. Ploog, “Quantum Beats between the Light and Heavy Hole in GaAs-AlGaAs Quantum Wells”, Sol. Stat. Comm. 74:1279 (1990).

    Article  ADS  Google Scholar 

  17. K. Leo, T.C. Damen, J. Shah, E.O. Göbel, and K. Köhler, “Quantum Beats of Light and Heavy Hole Excitons in Quantum Wells”, Appl. Phys. Lett. 57:19 (1990).

    Article  ADS  Google Scholar 

  18. K. Leo, T.C. Damen, J. Shah, and K. Köhler, “Quantum beats of free and bound excitons in GaAs/Al x Ga1−x As quantum wells”, Phys. Rev. B 42:11359 (1990).

    Article  ADS  Google Scholar 

  19. K. Leo, J. Shah, T.C. Damen, A. Schulze, T. Meier, S. Schmitt-Rink, P. Thomas, E.O. Göbel, S.L. Chuang, M.S.C. Lao, W. Schäfer, K. Köhler, and P. Ganser, “Dissipative Dynamics of an Electronic Wave-packet in a Semiconductor Double Well Potential”, IEEE J. Quant. Electr. 28:2498 (1992).

    Article  ADS  Google Scholar 

  20. R. Eccleston, J. Kuhl, D. Bennhardt, and P. Thomas, “Intensity Dependent Four-Wave-Mixing Rules in Quantum Wells”, Sol. Stat. Comm. 86:93 (1993).

    Article  ADS  Google Scholar 

  21. D. Bennhardt, P. Thomas, R. Eccleston, E.J. Mayer, and J. Kuhl, “Polarization Dependence of Four-Wave-Mixing Signals in Quantum Wells”, Phys. Rev. B 47:13485 (1993).

    Article  ADS  Google Scholar 

  22. K. Leo, J. Shah, S. Schmitt-Rink, and K. Köhler, in: “Proceed. 7th Int. Symp. on Ultrafast Processes in Spectroscopy”, Bayreuth, Germany, eds. A. Laubereau and A. Seilmeier (Inst. of Phys. Conf. Series 126, Bristol, Philadelphia, 1992) p. 411.

    Google Scholar 

  23. H.H. Yaffe, Y. Prior, J.P. Harbison, and L.T. Florez, “Polarization and wavelength dependence of relaxation processes as measured by time delayed four-wave-mixing in quantum wells”, in “Proceed. 2nd Conf. Quantum Electronics and Laser Science”, 1991, Technical Digest Series, Vol. 11 (Optical Society of America, Washington, D.C., 1991), p. 196; O. Carmel, I. Bar-Joseph, IQEC, Vienna, post-deadline paper (1992).

    Google Scholar 

  24. S.T. Cundiff, H. Wang, and D.G. Steel, “Poalrization-dependent picosecond excitonic nonlinearities and the complexities of disorder”, Phys. Rev. B 46:7248 (1992).

    Article  ADS  Google Scholar 

  25. See e.g., “Optical Nonlinearities and Instabilities in Semiconductors”, ed. by H. Haug (Academic Press, New York-London, 1988).

    Google Scholar 

  26. See e.g. R.G. Brewer, “Coherent optical transients”, Phys. Today 5:50 (1977).

    Article  Google Scholar 

  27. T. Yajima and Y. Taira, “Spatial Optical Parametric Coupling of Picosecond Light Pulses and Transverse Relaxation Effect in Resonant Media”, J. Phys. Soc. Jpn. 47:1620 (1977).

    Article  ADS  Google Scholar 

  28. J. Feldmann, G. Peter, E.O. Göbel, P. Dawson, K. Moore, C. Foxon, and R.J. Elliot, “Linewidth Dependence of Radiation Exciton Lifetimes in Quantum Wells”, Phys. Rev. Lett. 59:2337 (1987).

    Article  ADS  Google Scholar 

  29. R. Eccleston, B.F. Feuerbacher, J. Kuhl, W.W. Rühle, and K. Ploog, “Density-Dependent Exciton Radiative Lifetimes in GaAs Quantum Wells”, Phys. Rev. B 45:11403 (1992).

    Article  ADS  Google Scholar 

  30. D.S. Citrin, “Radiative Lifetimes of Excitons in Quantum Wells: Localization and Phase-Coherence Effects”, Phys. Rev. B 47:3832 (1993).

    Article  ADS  Google Scholar 

  31. D.S. Citrin “Homogeneous-Linewidth Effects on Radiative Lifetimes of Excitons in Quantum Wells”, Sol. Stat. Commun. 84:281 (1992).

    Article  ADS  Google Scholar 

  32. V. Srinivas, J. Hrymiewicz, Y.-J. Chen, and C.E.C. Wood, “Intrinsic Linewidths and Radiative Lifetimes of Free-Excitons in GaAs Quantum Wells”, Phys. Rev. B 46:10193 (1992).

    Article  ADS  Google Scholar 

  33. A. Honold, L. Schultheis, J. Kuhl, and C.W. Tu, “Reflected degenerate four-wave-mixing on GaAs single quantum wells”, Appl. Phys. Lett. 52:2105 (1988).

    Article  ADS  Google Scholar 

  34. A.M. Weiner and E.P. Ippen, “Novel transient scattering technique for femtosecond dephasing measurements”, Opt. Lett. 9:53 (1984).

    Article  ADS  Google Scholar 

  35. See, e.g. J.C. AuJeung in “Optical Phase Conjugation”, ed. R.A. Fisher (Academic, New York) 1983, p. 285, see also Ref. [28].

    Chapter  Google Scholar 

  36. G. Noll, U. Siegner, S. Shevel, and E.O. Göbel, “Picosecond Stimulated Photon Echo Due to Intrinsic Excitations in Semiconductor Mixed Crystals”, Phys. Rev. Lett. 64:792 (1990).

    Article  ADS  Google Scholar 

  37. M.D. Webb, S.T. Cundiff, and D.G. Steel, “Observation of Time-Resolved Picosecond Stimulated Photon Echoes and Free Polarization Decay in GaAs/AlGaAs Multiple Quantum Wells”, Phys. Rev. Lett. 66:934 (1991).

    Article  ADS  Google Scholar 

  38. M. Koch, J. Feldmann, G. von Plessen, E.O. Göbel, P. Thomas, and K. Köhler, “Quantum Beats versus Polarization Interference: An Experimental Distinction”, Phys. Rev. Lett. 69:3631 (1992).

    Article  ADS  Google Scholar 

  39. M. Koch, J. Feldmann, E.O. Göbel, P. Thomas, and J. Shah, “Coherent Coupling of Exciton Transitions in different Quantum Well Islands”, to be published.

    Google Scholar 

  40. For reviews see e.g., J. Kuhl, A. Honold, L. Schultheis, and C.W. Tu, “Optical Dephasing and Orientational Relaxation of Wannier-Excitons and Free Carriers in GaAs and GaAs/Al x Ga1−x As Quantum Wells”, Festkörperprobleme 29:157 (1989).

    Google Scholar 

  41. S.T. Cundiff and D.G. Steel, “Coherent Transient Spectroscopy of Excitons in GaAs-AlGaAs Quantum Wells”, IEEE J. Quant. Electr. 28:2423 (1992).

    Article  ADS  Google Scholar 

  42. L. Schultheis, J. Kuhl, A. Honold, and C.W. Tu, “Picosecond Phase Coherence and Orientational Relaxation of Excitons in GaAs”, Phys. Rev. Lett. 57:1793 (1986).

    Article  ADS  Google Scholar 

  43. A. Honold, L. Schultheis, J. Kuhl, and C.W. Tu, “Collision braodening of two-dimensional excitons in a GaAs single quantum well”, Phys. Rev. B 40:6442 (1989).

    Article  ADS  Google Scholar 

  44. A. Honold, T. Saku, Y. Horikoshi, and K. Köhler, “Optical dephasing of light-hole excitons in GaAs single quantum wells”, Phys. Rev. B 45:6010 (1992).

    Article  ADS  Google Scholar 

  45. K. Leo, E.O. Göbel, T.C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J.F. Müller, K. Köhler, and P. Ganser, “Subpicosecond Four-Wave-Mixing in GaAs/Al x Ga1−x As Quantum Wells”, Phys. Rev. B 44:5726 (1991).

    Article  ADS  Google Scholar 

  46. L. Schultheis, M.D. Sturge, and J. Hegarty, “Photon echoes from two-dimensional excitons in GaAs-AlGaAs quantum wells”, Appl. Phys. Lett. 47:995 (1985).

    Article  ADS  Google Scholar 

  47. M.D. Webb, S.T. Cundiff, and D.G. Steel, “Stimulated-picosecond-photon-echo studies of localized exciton relaxation and dephasing in GaAs/Al x Ga1−x As multiple quantum wells”, Phys. Rev. B 43:12658 (1991).

    Article  ADS  Google Scholar 

  48. V. Heuckeroth, D. Bennhardt, P. Thomas, and H. Vaupel, “Optical phase relaxation in disordered semiconductors due to electron-phonon coupling”, Proceedings of the Vth Internat. Conf. on Hopping and Related Phenomena, Glasgow (1993), World Scientific Singapore.

    Google Scholar 

  49. M. Wegener, E.O. Göbel, G. Sucha, N. Sauer, T.Y. Chang, W. Schäfer, S. Schmitt-Rink, and D.S. Chemla, “Ultrafast dephasing of excitons at low temperatures in ternary InGaAs/InAlAs quantum wells”, XVII Internat. Quantum Electronics Conf., IQEC 90, Anaheim (1990), Technical Digest, p.194.

    Google Scholar 

  50. U. Siegner, D. Weber, E.O. Göbel, D. Bennhardt, V. Heuckeroth, R. Saleh, S.D. Baranowskii, P. Thomas, H. Schwab, C. Klingshirn, J.M. Hvam, and V.G. Lyssenko, “Optical dephasing in semiconductor mixed crystals”, Phys. Rev. B 46:4564 (1992).

    Article  ADS  Google Scholar 

  51. L. Schultheis, A. Honold, J. Kuhl, K. Köhler, and C.W. Tu, “Optical Dephasing of Homogeneously Broadened Two-Dimensional Exciton Transitions in GaAs Quantum Wells”, Phys. Rev. B 34:9027 (1986).

    Article  ADS  Google Scholar 

  52. L. Schultheis, A. Honold, J. Kuhl, K. Köhler, and C.W. Tu, “Phase Coherence and line broadening of free excitons in GaAs Quantum Wells”, Superlattices and Microstructures 2:441 (1986).

    Article  ADS  Google Scholar 

  53. T. Takagahara, “Localization and energy transfer of quasi-two-dimensional excitons in GaAs-AlAs quantum-well heterostructures”, Phys. Rev. B 31:6552 (1985).

    Article  ADS  Google Scholar 

  54. T. Takagahara, “Localization and homogeneous dephasing of quasi-two-dimensional excitons in quantum-well heterostructures”, Phys. Rev. B 32:7013 (1985).

    Article  ADS  Google Scholar 

  55. W.H. Knox, R.L. Fork, M.C. Downer, D.A.B. Miller, D.S. Chemla, C.V. Shank, A.C. Gossard, and W. Wiegmann, “Femtosecond Dynamics of Resonantly Excited Excitons in Room-Temperature GaAs Quantum Wells”, Phys. Rev. Lett. 54:1306 (1985).

    Article  ADS  Google Scholar 

  56. L. Schultheis, J. Kuhl, A. Honold, and C.W. Tu, “Ultrafast Phase Relaxation of Excitons via Exciton-Exciton and Exciton-Electron Collisions”, Phys. Rev. Lett. 57:1635 (1986).

    Article  ADS  Google Scholar 

  57. G. Tränkle, H. Leier, A. Forchel, H. Haug, C. Ell, and G. Weimann, “Dimensionality Dependence of the Band-Gap Renormalization in Two-and Three-Dimensional Electron-Hole Plasmas in GaAs”, Phys. Rev. Lett. 58:419 (1987).

    Article  ADS  Google Scholar 

  58. S. Schmitt-Rink, D.-S. Chemla, and D.A.B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures”, Phys. Rev. B 32:6601 (1985).

    Article  ADS  Google Scholar 

  59. N. Peyghambarian, H.M. Gibbs, J.L. Jewell, A. Antonetti, A. Migus, D. Hulin, and A. Mysyrowicz, “Blue Shift of the Exciton Resonance due to Exciton-Exciton Interactions in a Multiple-Quantum-Well Structure”, Phys. Rev. Lett. 53:2433 (1984).

    Article  ADS  Google Scholar 

  60. D. Hulin, A. Mysyrowicz, A. Antonetti, A. Migus, W.T. Masselink, H. Morkoc, H.M. Gibbs, and N. Peyghambarian, “Well-size dependence of exciton blue shift in GaAs multiple-quantum-well structures”, Phys. Rev. B 33:4389 (1986).

    Article  ADS  Google Scholar 

  61. S. Schmitt-Rink, D. Bennhardt, V. Heuckeroth, P. Thomas, P. Haring, G. Maidorn, H. Bakker, K. Leo, D.-S. Kim, J. Shah, and K. Köhler, “Polarization dependence of heavy-and light-hole quantum beats”, Phys. Rev. B 46:10460 (1992).

    Article  ADS  Google Scholar 

  62. D.S. Kim, J. Shah, T.C. Damen, W. Schäfer, F. Jahnke, S. Schmitt-Rink, and K. Köhler, “Unusually Slow Temperai Evolution of Femtosecond Four-Wave-Mixing Signals in Intrinsic GaAs Quantum Wells: Direct Evidence for the Dominance of Interaction Effects”, Phys. Rev. Lett. 69:2725 (1992).

    Article  ADS  Google Scholar 

  63. S. Weiss, M.-A. Mycek, J.-Y. Bigot, S. Schmitt-Rink, and D.S. Chemla, “Collective Effects in Excitonic and Free Induction Decay: Do Semiconductors and Atoms Emit Coherent Light in Different Ways?”, Phys. Rev. Lett. 69:2685 (1992).

    Article  ADS  Google Scholar 

  64. R.C. Miller, D.A. Kleinman, A.C. Gossard, and O. Munteanu, “Biexcitons in GaAs quantum wells”, Phys. Rev. B 25:6545 (1982).

    Article  ADS  Google Scholar 

  65. D.A. Kleinman, “Binding energy of biexcitons and bound excitons in quantum wells”, Phys. Rev. B 28:871 (1983).

    Article  ADS  Google Scholar 

  66. R. Cingolani, Y. Chen, and K. Ploog, “Biexciton formation in GaAs/Al x Ga1−x As multiple quantum wells: An optical investigation”, Phys. Rev. B 38:13478 (1988).

    Article  ADS  Google Scholar 

  67. R.T. Phillips, D.J. Lovering, G.J. Denton, and G.W. Smith, “Biexciton creation and recombination in a GaAs quantum well”, Phys. Rev. B 45:4308 (1992).

    Article  ADS  Google Scholar 

  68. D.R. Wake, J.C. Kim, and J.P. Wolfe, “Biexcitons in GaAs/AlGaAs Quantum Wells — their Approach to Chemical Equilibrium and Transport”, Quantum Electronics Laser Science Conf., QELS 93, Baltimore, May 2–7, 1993, postdeadline paper.

    Google Scholar 

  69. M. Wegener, D.S. Chemla, S. Schmitt-Rink, and W. Schäfer, “Line shape of time-resolved four-wave mixing”, Phys. Rev. A 42:5675 (1990).

    Article  ADS  Google Scholar 

  70. K. Leo, M. Wegener, J. Shah, D.S. Chemla, E.O. Göbel, T.C. Damen, S. Schmitt-Rink, and W. Schäfer, “Effects of Coherent Polarization Interactions on Time-Resolved Degenerate Four-Wave Mixing”, Phys. Rev. Lett. 65:1340 (1990).

    Article  ADS  Google Scholar 

  71. C. Dörnfeld and J.M. Hvam, “Optical Nonlinearities and Phase Coherence in CdSe Studied by Transient Four-Wave Mixing”, IEEE J. Quant. Electr. QE-25:904 (1989).

    Article  ADS  Google Scholar 

  72. D.J. Lovering, R.T. Phillips, G.J. Denton, and G.W. Smith, “Resonant Generation of Biexcitons in a GaAs Quantum Well”, Phys. Rev. Lett. 68:1880 (1992).

    Article  ADS  Google Scholar 

  73. K.H. Pantke, D. Oberhauser, V.G. Lyssenko, J.M. Hvam, and G. Weimann, “Coherent generation and interference of excitons and biexcitons in GaAs/Al x Ga1−x As quantum wells”, Phys. Rev. B 47:2413 (1993).

    Article  ADS  Google Scholar 

  74. S. Bar-Ad and I. Bar-Joseph, “Absorption Quantum Beats of Magnetoexcitons in GaAs Heterostructures”, Phys. Rev. Lett. 66:2491 (1991).

    Article  ADS  Google Scholar 

  75. S. Bar-Ad and I. Bar-Joseph, “Exciton Spin Dynamics in GaAs Heterostructures”, Phys. Rev. Lett. 68:349 (1992).

    Article  ADS  Google Scholar 

  76. G. Finkelstein, S. Bar-Ad, O. Carmel, and I. Bar-Joseph, “Biexcitonic Effects in Transient Nonlinear Optical Experiments in Quantum Wells”, Phys. Rev. B 47:12964 (1993).

    Article  ADS  Google Scholar 

  77. H.H. Yaffe, Y. Prior, J.P. Harbison, and L.T. Florez, “Polarization dependence and selection rules of transient four-wave mixing in GaAs quantum-well excitons”, J. Opt. Soc. Am. B10:578 (1993).

    ADS  Google Scholar 

  78. G. Smith, E.J. Mayer, J. Kuhl, D. Bennhardt, K. Bott, E. Heller, and P. Thomas, to be published.

    Google Scholar 

  79. K. Bott, O. Heller, D. Bennhardt, P. Thomas, E.J. Mayer, G. Smith, and J. Kuhl, to be published.

    Google Scholar 

  80. T. Saiki, M. Kuwata-Gonokami, T. Matsusue, and H. Sakaki, “Elementary Excitation Picture of Excitonic Resonant Nonlinearity in a GaAs Quantum Well”, Quantum Electronics and Laser Science Conf., QELS-93, Baltimore, May 2–7 (1993); 1993 Technical Digest Series, Vol. 12.

    Google Scholar 

  81. G. Bastard, “Wave Mechanics Applied to Semiconductor Heterostructures” (Les Editions de Physique, Les Ulis, France 1988).

    Google Scholar 

  82. S. Cundiff, private communications.

    Google Scholar 

  83. E.J. Mayer, G. Smith, J. Kuhl, H. Lage, D. Heitmann, and K. Ploog, to be published.

    Google Scholar 

  84. H. Wang, K.B. Ferrio, D.G. Steel, “Polarization-dependent transient nonlinear optical response of heavy-and light-hole excitons in GaAs”, Quantum Electronics and Laser Science Conference, QELS-93, Baltimore, May 2–7 (1993); 1993 Techn. Digest Series, Vol. 12.

    Google Scholar 

  85. Y.Z. Hu, R. Binder, S.W. Koch, “Valence-band mixing and photon echo in semiconductor quantum wells”, Quantum Electronics and Laser Science Conf., QELS-93, Baltimore, May 2–7, (1993), 1993 Techn. Digest Series, Vol. 12.

    Google Scholar 

  86. Y.Z. Hu, R. Binder, S.W. Koch, “Photon echo and valence-band mixing in semiconductor quantum wells”, Phys. Rev. B 47:15679 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuhl, J. et al. (1994). Optical Dephasing of Excitons in III-V Semiconductors. In: Phillips, R.T. (eds) Coherent Optical Interactions in Semiconductors. NATO ASI Series, vol 330. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9748-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9748-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9750-3

  • Online ISBN: 978-1-4757-9748-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics