Skip to main content

Catalytic Antibodies: Perspectives and Prospects

  • Chapter
Chemical Aspects of Enzyme Biotechnology
  • 93 Accesses

Abstract

Enzymes make complex life possible. With very few exceptions, each of the tens of thousands of chemical reactions that sustain living systems takes place quickly and smoothly through the action of a specific enzyme. The high rates and selectivities of enzymes make them ideal catalysts for in vitro processes, as well, and they are being utilized increasingly in research, industry, and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. A. Kabat, “Structural Concepts in Immunology and Immunochemistry,” Holt, Reinhart and Winston, New York, 1976.

    Google Scholar 

  2. D. Pressman and A. Grossberg, “The Structural Basis of Antibody Specificity,” Benjamin, New York, 1968

    Google Scholar 

  3. A. Nisonoff, J. Hopper and S. Spring, “The Antibody Molecule,” Academic Press, New York, (1975).

    Google Scholar 

  4. L. Pauling, Chemical achievement and hope for the future, Amer. Sci. 36:51 (1948).

    PubMed  CAS  Google Scholar 

  5. W. P. Jencks, “Catalysis in Chemistry and Enzymology,” McGraw Hill, New York, p.288 (1969).

    Google Scholar 

  6. R. Wolfenden, Transition state analog inhibitors and enzyme catalysis, Ann. Rev. Biophys. Bioeng. 5:271 (1976).

    Article  CAS  Google Scholar 

  7. G. E. Lienhard, Enzymatic catalysis and transition-state theory, Science 180:149 (1973).

    Article  PubMed  CAS  Google Scholar 

  8. J. Sauer, Diels-Alder reactions: New preparative aspects, Angew. Chem., Int. Ed. Engl. 5:211 (1966); Diels-Alder reactions: The reaction mechanism, ibid. 6:16 (1967).

    Article  CAS  Google Scholar 

  9. A. Wassermann, “Diels-Alder Reactions”, Elsevier Publ. Co.; Amsterdam, (1965).

    Google Scholar 

  10. M. I. Page and W. P. Jencks, Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect, Proc. Nat. Acad. Sci. USA 68:1678 (1971).

    Article  PubMed  CAS  Google Scholar 

  11. W. P. Jencks, Binding energy, specificity, and enzymic catalysis: The Circe effect, Adv. Enzymol. 43:219 (1975).

    PubMed  CAS  Google Scholar 

  12. D. Hilvert, K. W. Hill, K. D. Nared, and M.-T. M. Auditor, Antibody catalysis of a Diels-Alder reaction, J. Am. Chem. Soc. 111:9261 (1989).

    Article  CAS  Google Scholar 

  13. F. K. Brown and K. N. Houk, The STO-3G transition structure of the Diels-Alder reaction, Tetrahedron Lett. 25:4609 (1984).

    Article  CAS  Google Scholar 

  14. F. E. Ziegler, The thermal aliphatic Claisen rearrangement, Chem. Rev. 88:1423 (1988).

    Article  CAS  Google Scholar 

  15. R. P. Lutz, Catalysis of the Cope and Claisen rearrangements, Chem. Rev. 84:205 (1984).

    Article  CAS  Google Scholar 

  16. P. R. Andrews, E. N. Cain, E. Rizzardo, and G. D. Smith, Rearrangement of chorismate to prephenate. Use of chorismate mutase inhibitors to define the transition state structure, Biochemistry 16:4848 (1977).

    Article  PubMed  CAS  Google Scholar 

  17. H. S.-I. Chao and G. A. Berchtold, Inhibition of chorismate mutase activity of chorismate mutase-prephenate dehydrogenase from Aerobacter aerogenes, Biochemistry 21:2778 (1982).

    Article  PubMed  CAS  Google Scholar 

  18. S. G. Sogo, T. S. Widlanski, J. H. Hoare, C. E. Grimshaw, G. A. Berchthold, and J. R. Knowles, Stereochemistry of the rearrangement of chorismate to prephenate: Chorismate mutase involves a chair transition state, J. Am. Chem. Soc. 106:2701 (1984).

    Article  CAS  Google Scholar 

  19. P. A. Bartlett and C. R. Johnson, An inhibitor of chorismate mutase resembling the transition-state conformation, J. Am. Chem. Soc. 107:7792 (1985).

    Article  CAS  Google Scholar 

  20. D. Hilvert, S. H. Carpenter, K. D. Nared, and M.-T. M. Auditor, Catalysis of concerted reactions by antibodies: The Claisen rearrangement, Proc. Natl. Acad. Sci. USA 85:4953 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. D. Y. Jackson, J. W. Jacobs, R. Sugasawara, S. H. Reich, P. A. Bartlett, and P. G. Schultz, An antibody-catalyzed Claisen rearrangement, J. Am. Chem. Soc. 110:4841 (1988).

    Article  CAS  Google Scholar 

  22. D. Hilvert and K. D. Nared, Stereospecific Claisen rearrangement catalyzed by an antibody, J. Am. Chem. Soc. 110:5593 (1988).

    Article  CAS  Google Scholar 

  23. A. Tramontano, K. D. Janda, and R. A. Lerner, Catalytic antibodies, Science 234:1566 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. S. J. Pollack, J. W. Jacobs, and P. G. Schultz, Selective chemical catalysis by an antibody, Science 234:1570 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. A. Tramontano, A. A. Ammann, and R. A. Lerner, Antibody catalysis approaching the activity of enzymes, J. Am. Chem. Soc. 110:2282 (1988).

    Article  CAS  Google Scholar 

  26. K. D. Janda, S. J. Benkovic, and R. A. Lerner, Catalytic antibodies with lipase activity and R or S substrate selectivity, Science 244:437 (1989).

    Article  PubMed  CAS  Google Scholar 

  27. K. D. Janda, D. Schloeder, S. J. Benkovic, and R. A. Lerner, Induction of an antibody that catalyzes the hydrolysis of an amide bond, Science 241:1188 (1988)

    Article  PubMed  CAS  Google Scholar 

  28. B. L. Iverson, and R. A. Lerner, Sequence-specific peptide cleavage catalyzed by an antibody, Science. 243:1184 (1989).

    Article  PubMed  CAS  Google Scholar 

  29. S. Paul, D. J. Volle, C. M. Beach, D. J. Johnson, M. J. Powell, R. J. Massey, Catalytic hydrolysis of vasoactive intestinal peptide by human autoantibody, Science. 244:1158 (1989).

    Article  PubMed  CAS  Google Scholar 

  30. S. J. Benkovic, A. D. Napper, and R. A. Lerner, Catalysis of a stereospecific bimolecular amide synthesis by an antibody, Proc. Natl. Acad. Sci. USA 85:5355 (1988).

    Article  PubMed  CAS  Google Scholar 

  31. A. Balan, B. P. Doctor, B. S. Green, M. Torten, and H. Ziffer, Antibody combining sites as templates for selective organic chemical reactions, J. Chem. Soc., Chem. Commun. 106 (1988).

    Google Scholar 

  32. A. G. Cochran, R. Sugasawara, and P. G. Schultz, Photosensitized cleavage of a thymine dimer by an antibody, J. Am. Chem. Soc. 110:7888 (1988).

    Article  CAS  Google Scholar 

  33. K. M. Shokat, C.J. Leumann, R. Sugasawara, and P. G. Schultz, An antibody-mediated redox reaction, Angew. Chem. Int. Ed. Engl. 27:1172 (1988).

    Article  Google Scholar 

  34. N. Janjic and A. Tramontano, Antibody-catalyzed redox reaction, J. Am. Chem. Soc. 111:9109 (1989).

    Article  CAS  Google Scholar 

  35. K. M. Shokat, C. J. Leumann, R. Sugasawara, and P. G. Schultz, A new strategy for the generation of catalytic antibodies, Nature (London) 338:269 (1989).

    Article  CAS  Google Scholar 

  36. W. D. Huse, L. Sastry, S. A. Iverson, A. S. Kang, M. Alting-Mees, D. R. Burton, S. J. Benkovic, and R. A. Lerner, Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda, Science 246:1275 (1989).

    Article  PubMed  CAS  Google Scholar 

  37. S. J. Pollack, G. R. Nakayama, and P. G. Schultz, Introduction of nucleophiles and spectroscopic probes into antibody combining sites, Science 242:1038 (1988).

    Article  PubMed  CAS  Google Scholar 

  38. A. Skerra and A. Plückthun, Assembly of a functional immunoglobulin Fv fragment in Escherichia coli, Science 240:1038 (1988).

    Article  PubMed  CAS  Google Scholar 

  39. M. Better, C. P. Chang, R. R. Robinson, and A. H. Horwitz, Escherichia coli secretion of an active chimeric antibody fragment, Science 240:1041 (1988).

    Article  PubMed  CAS  Google Scholar 

  40. A. H. Horwitz, C. P. Chang, M. Better, K. E. Hellstrom, and R. R. Robinson, Secretion of functional antibody and Fab fragment from yeast cells, Proc. Natl. Acad. Sci. USA 85:8678 (1988).

    Article  PubMed  CAS  Google Scholar 

  41. J. R. Carlson, A new means of inducibly inactivating a cellular protein, Mol. Cell. Biol. 8:2638 (1988).

    PubMed  CAS  Google Scholar 

  42. S. Roberts, J. C. Cheetham, and A. R. Rees, Generation of an antibody with enhanced affinity and specificity for its antigen by protein engineering, Nature (London) 328:731 (1987).

    Article  CAS  Google Scholar 

  43. E. Baldwin, and P. G. Schultz, Generation of a catalytic antibody by site-directed mutagenesis, Science 245:1104 (1989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hilvert, D. (1990). Catalytic Antibodies: Perspectives and Prospects. In: Baldwin, T.O., Raushel, F.M., Scott, A.I. (eds) Chemical Aspects of Enzyme Biotechnology. Industry-University Cooperative Chemistry Program Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9637-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9637-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9639-1

  • Online ISBN: 978-1-4757-9637-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics