Skip to main content

Patterns of Activity in a Reduced Ionic Model of a Cell from the Rabbit Sinoatrial Node

  • Chapter
Book cover Chaos in Biological Systems

Part of the book series: NATO ASI Series ((NSSA,volume 138))

Abstract

Numerical simulation of an ionic model of an isolated nodal cell produces patterns of activity similar to those seen in the Belousov-Zhabotinsky reaction and in other physical and chemical systems in which chaotic dynamics is said to exist. However, no evidence of chaotic dynamics has yet been found in the modelling work. Recent experimental results on the sinatrial node reinforce this conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Arneodo, P. Coullet and C. Tresser, J. Stat. Phys. 27: 171 (1982).

    Article  Google Scholar 

  2. H. Brown, J. Kimura and S. Noble, in “Cardiac Rate and Rhythm”, eds. L.N. Bouman and H.J. Jongsma, Martinus Nijhoff, The Hague, pp. 53–68 (1982).

    Google Scholar 

  3. E. Bozler, Am. J. Physiol. 138: 273 (1943).

    Google Scholar 

  4. C. McC. Brooks and H.-H. Lu, “The Sinoatrial Pacemaker of the Heart”, Thomas, Springfield, pp. 89 (1972).

    Google Scholar 

  5. T.R. Chay, Physica 16D: 233 (1985).

    Google Scholar 

  6. T.R. Chay and Y.S. Lee, Biophys. J. 47: 641 (1985).

    Article  PubMed  CAS  Google Scholar 

  7. T.R. Chay and J. Rinzel, Biophys. J. 47: 357 (1985).

    Article  PubMed  CAS  Google Scholar 

  8. J.R. Clay, J. theor. Biol. 64: 671 (1977).

    Article  Google Scholar 

  9. P.F. Cranefield, Circ. Res. 41: 415 (1977).

    Article  PubMed  CAS  Google Scholar 

  10. P. Gaspard, Phys. Lett. 97A: 1 (1983).

    Article  Google Scholar 

  11. P. Gaspard and G. Nicolis, J. Stat. Phys. 31: 499 (1983).

    Article  Google Scholar 

  12. P. Gaspard, R. Kapral and G. Nicolis, J. Stat. Phys. 35: 697 (1984).

    Article  Google Scholar 

  13. L. Glass, M.R. Guevara, J. Belair and A. Shrier, Phys. Rev. 29A: 1348 (1984).

    Article  Google Scholar 

  14. P. Glendinning and C. Sparrow, J. Stat. Phys. 35: 645 (1984).

    Article  Google Scholar 

  15. A. Goldbeter and O. Decroly, Am. J. Physiol. 245: R478 (1983).

    PubMed  CAS  Google Scholar 

  16. M.R. Guevara, in Proceedings of Conference “Temporal Disorder in Human Oscillatory Systems”, Bremen, 1986, Springer, Heidelberg (in press).

    Google Scholar 

  17. M.R. Guevara and L. Glass, J. Math. Biol. 14: 1 (1982).

    Article  PubMed  CAS  Google Scholar 

  18. M.R. Guevara and H.J. Jongsma: unpublished.

    Google Scholar 

  19. M.R. Guevara, T. Op’t Hof and H.J. Jongsma: unpublished.

    Google Scholar 

  20. J. Honerkamp, G. Mutschler and R. Seitz, Bull. Math. Biol. 47: 1 (1985).

    PubMed  CAS  Google Scholar 

  21. H. Irisawa and A. Noma, in “Cardiac Rate and Rhythm”, eds. L.N. Bouman and H.J. Jongsma, Martinus Nijhoff, The Hague, pp. 35–51 (1982).

    Google Scholar 

  22. J. Jalife and C. Antzeievitch, Science 206: 695 (1979).

    Article  PubMed  CAS  Google Scholar 

  23. C.D. Jeffries, Physica Scripta T9: 11 (1985).

    Article  Google Scholar 

  24. I. Kodama and M.R. Boyett, Pflüg. Arch. 404: 214 (1985).

    Article  CAS  Google Scholar 

  25. D. Kreitner, J. mol. cell. Cardiol. 7: 655 (1975).

    Article  PubMed  CAS  Google Scholar 

  26. R. Lozi, C.R. Acad. Sci. Paris 294: 21 (1982).

    Google Scholar 

  27. J. Maselko and H.L. Swinney, Physica Scripta T9: 35 (1985).

    Article  Google Scholar 

  28. G. Matsumoto and T. Kunisawa, J. Phys. Soc. Japan 44: 1047 (1978).

    Article  CAS  Google Scholar 

  29. A. Noma, Jap. J. Physiol. 26: 619 (1976).

    Article  CAS  Google Scholar 

  30. A. Noma and H. Irisawa, Jap. J. Physiol. 24: 617 (1974).

    Article  CAS  Google Scholar 

  31. A. Noma and H. Irisawa, Pflüg. Arch. 351: 177 (1974).

    Article  CAS  Google Scholar 

  32. A. Noma and H. Irisawa, Jap. J. Physiol. 25: 287 (1975).

    Article  CAS  Google Scholar 

  33. A. Noma, M. Morad and H. Irisawa, Pflüg. Arch. 397: 190 (1983).

    Article  CAS  Google Scholar 

  34. L.F. Olsen and H. Degn, Biochim. Biophys. Acta 523: 321 (1978).

    Article  CAS  Google Scholar 

  35. W. Osterrieder, Q.-F. Yang and W. Trautwein, Pflüg. Arch. 394: 78 (1982).

    Article  CAS  Google Scholar 

  36. L.-Q. Pei, F. Guo, S.-X. Wu and L.O. Chua, IEEE Trans. Circuits and Syst. 33: 439 (1986).

    Google Scholar 

  37. A.S. Pikovsky, Phys. Lett. 85A: 13 (1981).

    Google Scholar 

  38. A.S. Pikovsky and M.I. Rabinovich, Physica 2D: 8 (1981).

    Google Scholar 

  39. A.S. Pikovsky and M.I. Rabinovich, Sov. Phys. Dokl. 213: 183 (1978).

    Google Scholar 

  40. O.E. Rössler, Z. Naturforsch. 31a: 259 (1976).

    Google Scholar 

  41. O.E. Rössler and K. Wegmann, Nature (Lond.) 271: 89 (1978).

    Article  Google Scholar 

  42. J.-C. Roux, R.H. Simoyi and H.L. Swinney, Physica 8D: 257 (1983).

    Google Scholar 

  43. M. Schell, S. Fraser and R. Kapral, Phys. Rev. 28A: 373 (1983).

    Google Scholar 

  44. R.A. Schmitz, K.R. Graziani and J.L. Hudson, J. Chem. Phys. 67: 3040 (1977).

    Article  CAS  Google Scholar 

  45. L.P. Gil’nikov, Math. USSR Sbornik, 10: 91 (1970).

    Article  Google Scholar 

  46. R.H. Simoyi, A. Wolf and H.L. Swinney, Phys. Rev. Lett. 49: 245 (1982).

    Article  CAS  Google Scholar 

  47. K. Tomita and I. Tsuda, Phys. Lett. 71A: 489 (1979).

    Article  Google Scholar 

  48. J.J. Tyson, J. Math. Biol. 5: 351 (1978).

    Google Scholar 

  49. J.S. Turner, J.-C. Roux, W.D. McCormick and H.L. Swinney, Phys. Lett. 85A: 9 (1981).

    Article  Google Scholar 

  50. B. Victorri, A. Vinet, F.A. Roberge and J.-P. Drouhard, Comp. Biomed. Res. 18: 10 (1985).

    Article  CAS  Google Scholar 

  51. T.C. West, in “The Specialized Tissues of the Heart”, eds. A.P. DeCarvalho, W.C. DeMello and B.F. Hoffman, Elsevier, New York, pp. 81–94 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guevara, M.R., van Ginneken, A.C.G., Jongsma, H.J. (1987). Patterns of Activity in a Reduced Ionic Model of a Cell from the Rabbit Sinoatrial Node. In: Degn, H., Holden, A.V., Olsen, L.F. (eds) Chaos in Biological Systems. NATO ASI Series, vol 138. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9631-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9631-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9633-9

  • Online ISBN: 978-1-4757-9631-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics