Skip to main content

Visuotopic Organization of Primate Extrastriate Cortex

  • Chapter

Part of the book series: Cerebral Cortex ((CECO,volume 12))

Abstract

One of the fundamental aspects of the organization of extrastriate visual cortex in mammals is the presence of multiple representations of the visual field. Although the existence of these visuotopic maps has been known for more than 50 years (Talbot, 1942), there are still many open issues regarding their organization. Descriptions of the number, boundaries, and visuotopic organization of cortical visual areas vary not only among primates, but also between studies of single species by different groups (e.g., Fig. 1; see Table I for abbreviations). It is not clear whether these differences reflect real individual or interspecies variability, or whether they merely reflect the need for more study or better criteria for the definition of visual areas. The aim of this chapter is to review the current evidence related to the precision, extent, and topological characteristics of visuotopic maps in extrastriate areas of primates. A critical evaluation of the published evidence on these subjects reveals that some of the present points of contention are the result not only of the complexity of the problem, but also of the scarcity of the data available for interpretation. Response properties, architecture, connections, and nodular patterns can also be used to lend or deny support to specific hypotheses generated on the basis of visuotopy, but these criteria will not be reviewed in detail here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albright, T. D., and Desimone, R., 1987, Local precision of visuotopic organization in the middle temporal area (MT) of the macaque, Exp. Brain Res. 65: 582–592.

    PubMed  CAS  Google Scholar 

  • Albus, K., and Beckmann, R., 1980, Second and third visual areas of the cat: Interindividual variability in retinotopic arrangement and cortical location, J. Physiol. (Land.) 299: 247–276.

    CAS  Google Scholar 

  • Albus, K., and Willie, P., 1994, lhe topography of tangenital inhibitory connections in the postnatally developing and mature striate cortex of the cat, Ear. J. Neurosci. 6: 779–792.

    Google Scholar 

  • Allman, J. M., and Kaas, J. H., 1971, A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aolns trivirgalns), Brain Res. 31: 85–105.

    PubMed  CAS  Google Scholar 

  • Allman, J. M., and Kaas, 1. H., I974a, The organization of the second visual area (V II) in the owl monkey: A second order transformation of the visual hemifield, Brain Res. 76: 247–265.

    Google Scholar 

  • Allman, J. M., and Kaas, J. H., 1974b, A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus trivirgatus), Brain Res. 81: 199–213.

    PubMed  CAS  Google Scholar 

  • AlIman, J. M., and Kaas, J. H., 1975, The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus), Brain Res. 100: 473–487.

    Google Scholar 

  • Allman, J. M., and Kaas, J. H., 1976, Representation of the visual field on the medial wall of occipital-parietal cortex in the owl monkey, Science 191: 572–575.

    PubMed  CAS  Google Scholar 

  • Allman, J. M., and McGuinness, E., 1983, The organization of cortical visual areas in a strepsirhine primate, Galago.senegalensis, Soc. Neurosci. Abstr. 9: 957.

    Google Scholar 

  • Allman, J. M., Kaas, J. H., and Lane, R. H., 1973, The middle temporal area (MT) in the bushbaby, Galago senegalensis, Brain Res. 57: 197–202.

    CAS  Google Scholar 

  • Allman, J., Campbell, C. B. G., and McGuinness, E., 1979, Fhe dorsal third tier area in Galago senegalensis, Brain Res. 179:355–36I.

    Google Scholar 

  • Allman, J., Miezin, F., and McGuinness, E., 1985, Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local—global comparisons in visual neurons, Annu. Rev. Neurosci. 8: 407–430.

    PubMed  CAS  Google Scholar 

  • Alloway, K. D., Rosenthal, P., and Burton, H., 1989, Quantitative measurements of receptive field changes during antagonism of GABAergic transmission in primary somatosensory cortex of cats, Exp. Brain Res. 78: 514–532.

    PubMed  CAS  Google Scholar 

  • Andersen, R. A., Asanuma, C., Essick, G., and Siegel, R. M., 1990, Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule, J Comp. Neurol. 296: 65–113.

    PubMed  CAS  Google Scholar 

  • Anderson, C. H., and Van Essen, D. C., 1987, Shifter circuits: A computational strategy for dynamic aspects of visual processing, Proc. Natl. Acad. Sci. USA 84: 6297–6301.

    PubMed  CAS  Google Scholar 

  • Baizer, J. S., Robinson, D. L., and Dow, B. M., 1977, Visual responses of area 18 neurons in awake, behaving monkey, J. Neurophysiol. 40: 1024–1037.

    PubMed  CAS  Google Scholar 

  • Baker, J. F., Petersen, S. E., Newsome, W. T., and Allman, J. M., 1981, Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): A quantitative comparison of medial, dorsomedial, dorsolateral and middle temporal areas, J. Neurophysiol. 45: 397–416.

    PubMed  CAS  Google Scholar 

  • Ballard, D. H., 1987, Cortical connections and parallel processing: Structure and funct ion, in: Vision, Brain and Cooperative Computation (M. A. Arbil) and A. R. Hanson, eds.), MIT Press, Cambridge, MA, pp. 563–621.

    Google Scholar 

  • Barlow, H. B., 1979, Three theories of cortical function, in: Neurobiology of Vision ( R. D. Freeman, ed.), Academic Press, New York, pp. 1–16.

    Google Scholar 

  • Barlow, H. B., 1981, Critical limiting factors in the design of the eye and visual cortex, Prot R. Soc. Lond. B 212: 1–34.

    CAS  Google Scholar 

  • Barlow, H. B., 1986, Why have multiple cortical areas? Vision Res. 26: 81–90.

    PubMed  CAS  Google Scholar 

  • Beckers, G., and Zeki, S., 1995, The consequences of inactivating areas VI and V5 on visual motion perception, Brain 118: 49–60.

    PubMed  Google Scholar 

  • Bignall, K. E., and Singer, P., 1967, Auditory, somatic and visual input to association and motor cortex of the squirrel monkey, Exp. Neurol. 18: 300–312.

    PubMed  CAS  Google Scholar 

  • Bisti, S., and Maffei, L., 1974, Behavioural contrast sensitivity of the cat in various visual meridians, J. Physiol. (Lond.) 241: 201–210.

    CAS  Google Scholar 

  • Blasdel, G. G., and Fitzpatrick, D., 1984, Physiological organization of layer 4 in macaque striate cortex, f. Neurosci. 4: 880–895.

    CAS  Google Scholar 

  • Blatt, G. J., Andersen, R. A., and Stoner, G. R., 1990, Visual receptive field organization and corticocortical connections of the lateral intraparietal area (area LIP) in the macaque, J Comp. Neural. 299: 421–445.

    CAS  Google Scholar 

  • Born, R. T., and Tootell, R. B. H., 1992, Segregation of global and local motion processing in primate middle temporal visual area, Nature 357: 497–499.

    PubMed  CAS  Google Scholar 

  • Boussaoud, D., Ungerleider, L. G., and Desimone, R., 1990, Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque, J. Comp. Neural. 296: 462–495.

    CAS  Google Scholar 

  • Boussaoud, D., Desimone, R., and Ungerleider, L. G., 1991, Visual topography of area TEO in the macaque, J. Comp. Neurol. 306: 554–575.

    PubMed  CAS  Google Scholar 

  • Bruce, C. J., Desimone, R., and Gross, C. G., 1982, Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque, J. Neurophysiol. 46: 369–384.

    Google Scholar 

  • Bruce, C. J., Desimone, R., and Gross, C. G., 1986, Both striate cortex and superior colliculus contribute to visual properties of neurons in superior temporal polysensory area of macaque monkey, f. Neurophysiol. 55: 1057–1075.

    CAS  Google Scholar 

  • Bullier, J., and Nowak, L. G., 1995, Parallel versus serial processing: New vistas on the distributed organization of the visual system, Curr. Opin. Neurobiol. 5: 497–503.

    PubMed  CAS  Google Scholar 

  • Bullier, J., Girard, 1., and Salin, P.-A., 1994, The role of area 17 in the transfer of information to extrastriate visual cortex, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates ( A. Peters and K. S. Rockland, eds.), Plenum Press, New York, pp. 301–331.

    Google Scholar 

  • Burkhalter, A., and Van Essen, I). C., 1986, Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey,J. Neurosci. 6: 2327–2351.

    Google Scholar 

  • Burkhalter, A., Felleman, D. J., Newsome, W. T., and Van Essen, D. C., 1986, Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex, Vision Res. 26: 63–80.

    PubMed  CAS  Google Scholar 

  • Burton, H., Fabri, M., and Alloway, K., 1995, Cortical areas within the lateral sulcus connected to cutaneous representations in area 36 and area 1: A revised interpretation of the 2nd somatosensory area in macaque monkeys, J. Comp. Neurol. 355: 539–562.

    PubMed  CAS  Google Scholar 

  • Calford, M. B., and Semple, M. N., 1995, Monaural inhibition in cat auditory cortex, J Neurophysiol. 73: 1876–1891.

    PubMed  CAS  Google Scholar 

  • Calford, M. B., and Tweedale, R., 1988, Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after digit amputation, Nature 332: 446–448.

    PubMed  CAS  Google Scholar 

  • Calford, M. B., Webster, W. R., and Semple, M. S., 1983, Measurement of frequency selectivity of single neurons in the central auditory pathway, Hearing Res. 11: 395–401.

    CAS  Google Scholar 

  • Clarey, J. C., Barone, P., and Imig, T. J., 1992, Physiology of thalamus and cortex, in: The Mammalian Auditory Pathway: Neurophysiology ( A. N. Popper and R. R. Fay, eds.), Springer-Verlag, Berlin, pp. 232–334.

    Google Scholar 

  • Colby, C. L., Gattass, R., Olson, C. R., and Gross, C. G., 1988, Topographic organization of cortical afferents to extrastriate area PO in the macaque: A dual tracer study, J Comp. Neurol. 238: 1257–1299.

    Google Scholar 

  • Colby, C. L., Duhamel, J.-R., and Goldberg, M. E., 1993a, Ventral intraparietal area in the macaque: Anatomic location and visual response properties, J. Neurophysiol. 69: 902–914.

    PubMed  CAS  Google Scholar 

  • Colby, C. L., Duhamel, J.-R., and Goldberg, M. E., 19936, The analysis of visual space by the lateral intraparietal area of the monkey: The role of extraretinal signals, Prog. Brain Res. 95: 307–316.

    Google Scholar 

  • Condo, G. J., and Casagrande, V. A., 1990, Organization of cytochrome oxidase staining in the visual cortex of nocturnal primates (Galago crassicaudatus and Galago senegalensis), J. Comp. Neurol. 293: 632–645.

    PubMed  CAS  Google Scholar 

  • Cowey, A., 1964, Projection of the retina on to striate and prestriate cortex in the squirrel monkey, Saimiri sciurens, J. Neurophysiol. 27: 366–393.

    PubMed  CAS  Google Scholar 

  • Cowey, A., 1981, Why are there so many visual areas? in: The Organization of. the Cerebral Cortex ( F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis, eds.), MIT Press, Cambridge, MA, pp. 395–413.

    Google Scholar 

  • Cowey, A., and Rolls, E. T., 1974, Human cortical magnification factor and its relation to visual acuity, Exp. Brain Res. 21: 447–454.

    PubMed  CAS  Google Scholar 

  • Cragg, B. G., and Ainsworth, A., 1969, The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method, Vision Res. 9: 733–747.

    PubMed  CAS  Google Scholar 

  • Creutzfeldt, O. D., 1988, Extrageniculo-striate visual mechanisms: Compartmentalization of visual functions, Prog. Brain Res. 75: 307–320.

    PubMed  CAS  Google Scholar 

  • Crick, F., 1984, The function of the thalamic reticular complex: The searchlight hypothesis, Proc. Natl. Acad. Sci. USA 81: 4586–4590.

    PubMed  CAS  Google Scholar 

  • Crick, F. H. C., Marr, D. C., and Poggio, T., 1981, An information-processing approach to understanding the visual cortex, in: The Organization of the Cerebral Cortex ( F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis, eds.), MIT Press, Cambridge, MA, pp. 505–533.

    Google Scholar 

  • Cusick, C. G., and Kaas, J. H., 1988, Cortical connections of area 18 and dorsolateral visual cortex in squirrel monkeys, Visual Neurosci. 1: 211–237.

    CAS  Google Scholar 

  • Cusick, C. G., Gould, H. J., and Kaas, J. H., 1984, Interhemispheric connections of visual cortex of owl monkeys (Aotus trivirgatus), marmosets (Callithrix jacchus), and galagos (Galago crassicaudatus), J. Comp. Neural. 230: 311–336.

    CAS  Google Scholar 

  • Daniel, P. M., and Whitteridge, D., 1961, The representation of the visual field on the cerebral cortex in monkeys, J. Physiol. (Lond.) 159: 203–221.

    CAS  Google Scholar 

  • Darian-Smith, C., and Gilbert, C. D., 1995, Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated, J. Neurosci. 15: 1631–1647.

    PubMed  CAS  Google Scholar 

  • DeBruyn, E. J., Casagrande, A., Beck, P. D., and Bonds, A. B., 1993, Visual resolution and sensitivity of single cells in the primary visual cortex (V 1) of a nocturnal primate (bush baby): Correlations with cortical layers and cytochrome oxidase patterns, J. Neurophysiol. 69: 3–18.

    PubMed  CAS  Google Scholar 

  • Desimone, R., and Gross, C. G., 1979, Visual areas in the temporal cortex of the macaque, Brain Res. 178: 363–380.

    PubMed  CAS  Google Scholar 

  • Desimone, R., and Schein, S. J., 1987, Visual properties of neurons in area V4 of the macaque: Sensitivity to stimulus form, J. Neurophysiol. 57: 835–868.

    CAS  Google Scholar 

  • Desimone, R., and Ungerleider, L. G., 1986, Multiple visual areas in the caudal superior temporal sulcus of the macaque, J. Comp. Neurol. 248: 164–189.

    PubMed  CAS  Google Scholar 

  • Desimone, R., Fleming, J., and Gross, C. G., 1980, Prestriate afferents to inferior temporal cortex: An HRP study, Brain Res. 184: 41–55.

    PubMed  CAS  Google Scholar 

  • Desimone, R., Schein, S. J., Moran, J., and Ungerleider, L. G., 1985, Contour, color and shape analysis beyond the striate cortex, Vision Res. 25: 441–452.

    PubMed  CAS  Google Scholar 

  • Desimone, R., Wessinger, M., Thomas, L., and Schneider, W., 1990, Atteutional control of visual perception: Cortical and subcortical mechanisms, Cold Spring Harbor Symp. Quant. Biol. 55: 963–971.

    PubMed  CAS  Google Scholar 

  • Desimone, R., Moran, J., Schein, S. f., and Mishkin, M., 1993, A role for the corpus callosum in visual area V4 of the macaque, Visual Neurosci. 10: 159–171.

    CAS  Google Scholar 

  • DeYoe, E. A., and Van Essen, D. C., 1985, Segregation of efferent connections and receptive field properties in visual area V2 of the macaque, Nature 317: 58–61.

    PubMed  CAS  Google Scholar 

  • DeYoe, E. A., Bandettini, P., Neitz, J., Miller, D., and Winans, P., 1994, Functional magnetic resonance imaging (FMRI) of the human brain, J. Neurosci. Meth. 54: 171–187.

    CAS  Google Scholar 

  • Doty, R. W., Kimura, D. S., and Mogenson, G. J., 1964, Photically and electrically elicited responses in the central visual system of the squirrel monkey, Exp. Neurol. 10: 19–51.

    PubMed  CAS  Google Scholar 

  • Dow, B. M., Snyder, A. Z., Vautin, R. G., and Bauer, R., 1981, Magnification factor and receptive field size in fovea) striate cortex of the monkey, Exp. Brain Res. 44: 213–228.

    PubMed  CAS  Google Scholar 

  • Dreher, B., 1986, Thalamocortical and corticocortical interconnections in the cat visual system: Relation to the mechanisms of information processing, in: Visual Neuroscience (J. D. Pettigrew, K. J. Sanderson, and W. R. Levick, eds.), Cambridge University Press, Cambridge, pp. 290–314.

    Google Scholar 

  • Dreher, B., and Cottee, L. J., 1975, Visual receptive field properties of cells in area 18 of the cats cerebral cortex before and after acute lesions in area 17, f. Neurophysiol. 38: 735–750.

    CAS  Google Scholar 

  • Dreher, B., Michalski, A., Cleland, B. G., and Burke, W, 1992, Effects of selective pressure block of Y-type optic nerve fibers on the receptive field properties of neurons in area 18 of the visual cortex of the cat, Visual Neurosci. 9: 65–78.

    CAS  Google Scholar 

  • Dubner, R., and Brown, F. J., 1968, Response of cells to restricted visual stimuli in an association area of cat cerebral cortex, Exp. Neural. 20: 70–86.

    CAS  Google Scholar 

  • Dubner, R., and Zeki, S. M., 1971, Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey, Brain Res. 35: 528–532.

    PubMed  CAS  Google Scholar 

  • Duhamel, J.-R., Colby, C. L., and Goldberg, M. E., 1992, The updating of the representation of visual space in parietal cortex by intended eye movements, Science 255: 90–92.

    PubMed  CAS  Google Scholar 

  • Dykes, R. W., and Ruest, A., 1986, What makes a map in somatosensory cortex, in: Cerebral Cortex, Volume 5, Sensory-Motor Areas and Aspects o f Cortical Connectivity ( E. G. Jones, and A. Peters, eds.), Plenum Press, New York, pp. 1–29.

    Google Scholar 

  • Dykes, R. W., Landry, P., Metherate, R., and Hicks, T. P., 1984, Functional role of GABA in cat primary somatosensory cortex: Shaping receptive fields of cortical neurons, J. Neurophysiol. 52: 1066–1093.

    PubMed  CAS  Google Scholar 

  • Edelman, G. M., 1981, Group selection as the basis for higher brain function, in: The Organization of the Cerebral Cortex ( F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis, eds.), MIT Press, Cambridge, MA, pp. 535–563.

    Google Scholar 

  • Erickson, R. G., Dow, B. M., and Snyder, A. Z., 1989, Representation of the fovea in the superior temporal sulcus of the macaque monkey, Exp. Brain Res. 78: 90–112.

    PubMed  CAS  Google Scholar 

  • Felleman, D. J., and Van Essen, D. C., 1987, Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex, J. Neurophysiol. 57: 889–920.

    PubMed  CAS  Google Scholar 

  • Felleman, J., and Van Essen, I). C., 1991, Distributed hierarchical processing in primate cerebral cortex, Cerebral Cortex 1: 1–47.

    Google Scholar 

  • Fiorani, M., Gattass, R., Rosa, M. G. P., and Sousa, A. P. B., 1989, Visual area MT in the Cebus monkey: Location, visuotopic organization, and variability, J Comp. Neurol. 287: 98–118.

    PubMed  Google Scholar 

  • Fiorani, M., Rosa, M. G. P., Gattass, R., and Rocha-Miranda, C. E., 1992, Dynamic surrounds of receptive fields in primate striate cortex: A physiological basis for perceptual completion? Proc. Natl. Aced. Sci. USA 89: 8547–8551.

    Google Scholar 

  • Flechsig, P., 1920, Anatomie des menschlichen Gehirns und Ruckenrnarks “lhieme Press, Leipzig.

    Google Scholar 

  • Frien, A., Eckorn, R., Bauer, R., Woelbern, L, and Kehr, H., 1994, Stimulus-specific fast oscillations at zero phase between visual areas VI and V2 of the awake monkey, NeuroReport 5: 2273–2277.

    CAS  Google Scholar 

  • Fritsches, K., 1995, Visuotopic organization in the primary and second visual areas of the marmoset, Diplomarbeit Thesis, Technischen Hochschule Darmstadt.

    Google Scholar 

  • Frostig, R., 1994, What does in vivo optical imaging tell us about the primary visual cortex in primates? in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates ( A. Peters and K. S. Rockland, eds.), Plenum Press, New York, pp. 331–358.

    Google Scholar 

  • Galletti, C., Battaglini, P. P., and Fattori, P., 1990, Functional properties of neurons in the anterior bank of the parieto-occipital sulcus of the macaque monkey, Eur. J. Neurosci. 3: 452–461.

    Google Scholar 

  • Gaska, J. P., Jacobson, L. D., and Pollen, D. A., 1987, Response suppression by extending sine-wave gratings within the receptive fields of neurons in visual cortical area Via of the macaque monkey, Vision Res. 27: 1687–1692.

    PubMed  CAS  Google Scholar 

  • Gattass, R., and Gross, C. G., 1981, Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque, J Neurophysiol. 46: 621–638.

    PubMed  CAS  Google Scholar 

  • Gattass, R., Gross, C. G., and Sandell, J. H., 1981, Visual topography of V2 in the macaque, J Comp. Neurol. 201: 519–539.

    PubMed  CAS  Google Scholar 

  • Gattass, R., Sousa, A. P. B., and Covey, E., 1985, Cortical visual areas of the macaque: Possible substrates for pattern recognition mechanisms, in: Pattern Recognition Mechanisms ( C. Chagas, R. Gattass, and C. G. Gross, eds.), Pontificial Academy of Sciences Press, Vatican City, pp. 120.

    Google Scholar 

  • Gattass, R., Sousa, A. P. B., and Rosa, M. G. P., 1987, Visual topography of VI in the Cebus monkey, J Comp. Neurol. 259: 529–548.

    PubMed  CAS  Google Scholar 

  • Gattass, R., Sousa, A. P. B., and Gross, C. G., 1988, Visuotopic organization and extent of V3 and V4 of the macaque, J. Neurosci. 8: 1831–1845.

    PubMed  CAS  Google Scholar 

  • Gattass, R., Rosa, M. G. P., Sousa, A. P. B., Pifion, M. C. G. P., Fiorani, M., and Neuenschwander, S., 1990, Cortical streams of visual information processing in primates, Brazil. J. Med. Biol. Res. 23: 375–393.

    CAS  Google Scholar 

  • Gilbert, C. D., and Wiesel, T. N., 1992, Receptive field dynamics in adult primary visual cortex, Nature 356: 150–152.

    PubMed  CAS  Google Scholar 

  • Girard, P., and Bullier, J., 1989, Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey, J Neurophysiol. 62: 1287–1302.

    PubMed  CAS  Google Scholar 

  • Girard, P., Salin, P. A., and Bullier, J., 1992, Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V 1, J. Neurophysiol. 67: 1437–1446.

    PubMed  CAS  Google Scholar 

  • Grinvald, A., Lieke, E. E., Frostig, R. D., and Hildesheim, 1994, Cortical point-spread function and long-range lateral interactions revealed by real-tine optical imaging of macaque monkey primary visual cortex, J. Neurosci. 14: 2545–2568.

    PubMed  CAS  Google Scholar 

  • Gross, C. G., and Mishkin, M., 1977, The neural basis of stimulus equivalence across retinal translation, in: Lateralizatinn in the Nervous System ( S. Hamad, R. Doty, J. Jaynes, L. Goldstein, and G. Krauthamer, eds.), Academic Press, New York, pp. 109–122.

    Google Scholar 

  • Gross, C. G., Schiller, P. H., Wells, C., and Gerstein, G. L., 1967, Single-unit activity in temporal association cortex of the monkey, J. Neurophysiol. 30: 833–843.

    PubMed  CAS  Google Scholar 

  • Gross, C. G., Bender, D. B., and Rocha-Miranda, C. E., 1969, Visual receptive fields of neurons in inferotemporal cortex of the monkey, Science 166: 1303–1306.

    PubMed  CAS  Google Scholar 

  • Gross, C. G., Bruce, C. J., Desinone, R., Fleming, J., and Gattass, R., 1981, Cortical visual areas of the temporal lobe: Three areas in the macaque, in: Cortical Sensory Organization, Volume 2, Multiple Visual Areas ( C. N. Woolsey, ed.), Humana Press, Clifton, NJ, pp. 187–216.

    Google Scholar 

  • Hall, W. C., Kaas, J. H., Killackey, 11., and Diamond, 1. T., 1971, Cortical visual areas in the grey squirrel (Sciur~us caroliuensis): A correlation between cortical evoked potential maps and architectonic subdivisions, J. Nenrophys 34: 437–452.

    CAS  Google Scholar 

  • Heinen, S., and Skavenski, A. A., 1991, Recovery of visual responses in fovea) VI neurons following bilateral fovea) lesions in adult monkey, Exp. Brain Res. 83: 670–674.

    PubMed  CAS  Google Scholar 

  • Hicks, F., and Dykes, R. W., 1983, Receptive field size for certain neurons in primary somatosensory cortex is determined by GABA-mediated intracortical inhibition, Brain Res. 274: 160–164.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Livingstone, M. S., 1985, Complex-unoriented cells in a subregion of primate area 18, Nature 315: 325–327.

    PubMed  CAS  Google Scholar 

  • Hubel, H., and Livingstone, M. S., 1987, Segregation of form, color, and stereopsis in primate area 18, J. Neurosci. 7: 3378–3415.

    PubMed  CAS  Google Scholar 

  • Hubel, H., and Wiesel, “F. N., 1965, Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat, J. Neurophysiol. 28: 229–289.

    Google Scholar 

  • Hubel, H., and Wiesel, F. N., 1969, Visual area of the lateral suprasylvian gyros (Clare-Bishop area) of the cat, J. Physiol. (Lond.) 202: 251–260.

    CAS  Google Scholar 

  • Hubel, H., and Wiesel, T. N., 1970, Cells sensitive to binocular depth in area 18 of the macaque monkey cortex, Nature 225: 41–42.

    PubMed  CAS  Google Scholar 

  • Hubel, H., and Wiesel, T. N., 1974, Uniformity of monkey striate cortex: A parallel relationship

    Google Scholar 

  • between field size, scatter, and magnification factor, J. Comp. Neurol. 158: 295–306.

    Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1977, Functional architecture of macaque visual cortex, Proc. R. Soc. London. B 198: 1–59.

    CAS  Google Scholar 

  • Hughes, A., 1977, The topography of vision in mammals of contrasting life style: Comparative optics and retinal organization, in: Handbook of Sensory Physiology, Volume VII J 5, The Visual System in Vertebrales ( F. Crescitelli, ed.), Springer-Verlag, Berlin, pp. 613–756.

    Google Scholar 

  • Imig, “F. J., Reale, R. A., and Brugge, J. F., 1982, The auditory cortex: Patterns of corticocortical projections related to physiological maps in the cat, in: Cortical Sensory Organization Volume 3, Multiple Auditory Areas (C. N. Woolsey, ed.), Humana Press, Clifton, NJ, pp. 1–41.

    Google Scholar 

  • Irvine, R. F., 1992, Physiology of the auditory brainstem, in: The Mammalian Auditory 1atltzvay: Neurophysiology ( A. N. Popper, and R. R. Fay, eds.), Springer-Verlag, Berlin, pp. 153–231.

    Google Scholar 

  • Jain, N., Preuss, T. M., and Kaas, J. H., 1994, Subdivisions of the visual system labeled with the Cat-301 antibody in tree shrews, Visual Neurosci. 11: 731–74I.

    CAS  Google Scholar 

  • Jones, E. G., 1993, GABAergic neurons and their role in cortical plasticity in primates, Cerebral Cortex 3: 361–372.

    PubMed  CAS  Google Scholar 

  • Kaas, J. H., 1989, Why does the brain have so many visual areas?, J. Cognitive Neurosci. 1: 121–135.

    Google Scholar 

  • Kaas, J. H., and Morel, A., 1993, Connections of visual areas of the upper temporal lobe of owl monkeys: The MT crescent and dorsal and ventral subdivisions of EST, J Neurosci. 13: 534–546.

    PubMed  CAS  Google Scholar 

  • Kaas, J. H., and Preuss, T. M., 1993, Archontan affinities as reflected in the visual system, in: Mammalian Phylogeny ( F. Szalay, M. Novacek, and M. McKenna, eds.), Springer-Verlag, New York, pp. 115–128.

    Google Scholar 

  • Kaas, J., Hall, W. C., and Diamond, I. T., 1970, Cortical visual areas I and 11 in the hedgehog: The relation between evoked potential maps and architectonic subdivisions, J. Neurophysiol. 33: 595–615.

    PubMed  CAS  Google Scholar 

  • Kaas, J. H., Hall, W. C., Killackey, H., and Diamond, 1. 1., 1972, Visual cortex of the tree shrew (Tupaia gin): Architectonic subdivisions and representation of the visual field, Brain Res. 42: 491–496.

    PubMed  CAS  Google Scholar 

  • Kaas, J. H., Krubitzer, L. A., Chino, Y. M., Langston, A. L., Polley, E. H., and Blair, N., 1990, Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina, Science 248: 229–231.

    CAS  Google Scholar 

  • Karten, H. J., 1979, Visual lemniscal pathways in birds, in: Neural Mechanisms of Behavior in the Pigeon ( A. M. Granda and J. H. Maxwell, eds.), Plenum Press, New York, pp. 409–430.

    Google Scholar 

  • Kitano, M., Niiyama, K., Kasamatsu, T., Sutter, E. E., and Norcia, A. M., 1994, Retinotopic and nonretinotopic field potentials in cat visual cortex, Visual Neurosci. 11: 953–977.

    CAS  Google Scholar 

  • Koch, C., and Ullman, S., 1985, Shifts in selective visual attention: Towards the underlying neural circuitry, Hum. Neurobiol. 4: 219–227.

    PubMed  CAS  Google Scholar 

  • Kohonen, T., 1989, Self-Organization and Associative Memory, 3rd ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Kolarik, R. C., Rasey, S. K., and Wall, J. T., 1994, The consistency, extent, and locations of early-onset changes in cortical nerve dominance aggregates following injury of nerves to primate hands, J Neurosci. 14: 4269–4288.

    PubMed  CAS  Google Scholar 

  • Komatsu, H., and Wurtz, R. H., 1988, Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons, J. Neurophysiol. 60: 580–603.

    PubMed  CAS  Google Scholar 

  • Krubitzer, L. A., and Kaas, J. H., 1989, Cortical integration of parallel pathways in the visual system of primates, Brain Res. 478: 161–165.

    PubMed  CAS  Google Scholar 

  • Krubitzer, L. A., and Kaas, J. H., 1990, Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns, Visual Neurosci. 5: 165–204.

    CAS  Google Scholar 

  • Krubitzer, L. A., and Kaas, J. H., 1993, The dorsomedial visual area of owl monkeys: Connections, myeloarchitecture, and homologies in other primates, J. Comp. Neurol. 334: 497–528.

    PubMed  CAS  Google Scholar 

  • Krubitzer, L. A., Clarey, J., Tweedale, R., Elston, G., and Gafford, M., 1995, A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys, J. Neurosci. 15: 3821–3839.

    PubMed  CAS  Google Scholar 

  • Laskin, S. E., and Spencer, W. A., 1979, Cutaneous masking. IL Geometry of excitatory and inhibitory receptive fields of single units in somatosensory cortex of the cat, J Neurophysiol. 42: 1061–1082.

    PubMed  CAS  Google Scholar 

  • Lee, D., and Malpeli, J. G., 1994, Global form and singularity: Modeling the blind spots role in lateral geniculate morphogenesis, Science 263: 1292–1294.

    CAS  Google Scholar 

  • Leventhal, A. G., Thompson, K. G., Liu, D., Zhou, Y., and Ault, S. J., 1995, Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex, J. Neurosci. 15: 1808–1818.

    CAS  Google Scholar 

  • Levi, D. M., Klein, S. A., and Aitsebaomo, A. P., 1985, Vernier acuity, crowding and cortical magnification, Vision Res. 25: 963–977.

    PubMed  CAS  Google Scholar 

  • Levitt, J. B., Kiper, D. C., and Movshon, J. A., 1994a, Receptive fields and functional architecture of macaque V2, J. Neurophysiol. 71: 2517–2542.

    PubMed  CAS  Google Scholar 

  • Levitt, J. B., Yoshioka, T., and Lund, J. S., 1994b, Intrinsic cortical connections in macaque visual area V2: Evidence for interactions between different functional streams, J. Contp. Neurol. 342: 551–570.

    CAS  Google Scholar 

  • Lin, C. S., Weller, R. E., and Kaas, J. H., 1982, Cortical connections of striate cortex in owl monkeys, 1. Comp. Neurol. 211: 165–176.

    CAS  Google Scholar 

  • Lvingstone, M. S., and Hubel, D. H., 1982, Thalamic input to cytochrome oxidase-rich regions in monkey visual cortex, Proc. Natl. Acad. Sci. USA 79: 6098–6101.

    Google Scholar 

  • Livingstone, M. S., and Hubel, I). H., 1984, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.

    PubMed  CAS  Google Scholar 

  • Lund, J. S., Yoshioka, T., and Levitt, J. B., 1993, Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex, Cerebral Cortex 3: 148–162.

    PubMed  CAS  Google Scholar 

  • Maguire, W. M., and Baiter, J. S., 1984, Visuotopic organization of the prelunate gyrus in rhesus monkey, J. Neurosci. 4: 1690–1704.

    PubMed  CAS  Google Scholar 

  • Malach, R., 1994, Cortical columns as devices for maximizing neuronal diversity, Trends Neurosci. 17: 101–104.

    PubMed  CAS  Google Scholar 

  • Malach, R., Iòotell, R. B. H., and Malonek, D., 1994, Relationship between orientation domains, cytochrome oxidase stripes, and intrinsic horizontal connections in squirrel monkey area V2, Cerebral Cortex 4: 151–165.

    CAS  Google Scholar 

  • Malonek, D., Motel, R. B. H., and Griuvald, A., 1994, Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT, Proc. R. Soc. Lund. B 258: 109–119.

    CAS  Google Scholar 

  • Maunsell, J. H. R., and Van Essen, D. C., 1983, The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey, J Neurosci. 3: 2563–2586.

    PubMed  CAS  Google Scholar 

  • Maunsell, J. H. R., and Van Essen, D. C., 1987, Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries, J. Comp. Neural. 266: 535–555.

    CAS  Google Scholar 

  • Mcllwain, J. T., 1975, Visual receptive fields and their images in superior colliculus of the cat, J. Neurophysiol. 38: 219–230.

    Google Scholar 

  • Mcllwain, J. T., 1976, Large receptive fields and spatial transformations in the visual system, Int. Rev. Pltysiol. 10: 223–248.

    Google Scholar 

  • Mcllwain, J. L, 1983, Representation of the visual streak in visuotopic maps of the cats superior colliculus: Influence of the mapping variable, Vision Res. 23: 507–516.

    Google Scholar 

  • Mcllwain, J. T., 1995, Lateral geniculate lamination and the corticogeniculate projection: A potential role in binocular vision in the quadrants, J. Theor. Biol. 172: 329–333.

    Google Scholar 

  • Mitchison, G., 1995, A type of duality between self-organizing maps and minimal wiring, Neural Computation. 7: 25–35.

    Google Scholar 

  • Montero, V. M., Rojas, A., and Iòrrealba, F., 1973, Retinotopic organization of striate and prestriatc visual cortex in the albino rat, Brain Res. 53: 202–207.

    PubMed  CAS  Google Scholar 

  • Moran, J., and Desimone, R., 1985, Selective attention gales visual processing in the extrastriate cortex, Science 229: 782–784.

    CAS  Google Scholar 

  • Morel, A., Garraghty, P. E., and Kaas, J. H., 1993, lbnotopic organization, architecture fields, and connections of auditory cortex in macaque monkeys, J. Comp. Neurol. 335: 437–459.

    Google Scholar 

  • Motter, B. C., and Mountcastle, V. B., I98I,Fhe functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: Fovea! sparing and opponent vector organization, J. Neurosci. 1: 3–26.

    Google Scholar 

  • Motter, B. C., and Poggio, G. F., 1990, Dynamic stabilization of receptive fields of cortical neurons (VI) during fixation of gaze in the macaque, Exp. Brain Res. 83: 37–43.

    PubMed  CAS  Google Scholar 

  • Motter, B. C., Steinmetz, M. A., Duffy, C. J., and Mountcastle, V. B., 1987, Functional properties of parietal visual neurons: Mechanisms of directionality along a single axis, J. Neurosci. 7: 154–176.

    CAS  Google Scholar 

  • Mountcastle, V. B., and Powell, T. P. S., 1959, Neural mechanisms subserving cutaneous sensibility, with special reference to the role of afferent inhibition in sensory perception and discrimination, Bull. Johns Hopkins Hosp. 105: 201–232.

    PubMed  CAS  Google Scholar 

  • Myers, R. E., 1962, Commissural connections between occipital lobes of the monkey, J Comp. Neurol. 118: 1–16.

    PubMed  CAS  Google Scholar 

  • Nelson, J. 1., Salin, P. A., Munk, M. H. J., Arzi, M., and Bullier, J., 1992, Spatial and temporal coherence in corticocortical connections: A cross-correlation study in area 17 and area 18 in the cat, Visual Neurosci. 9: 21–37.

    CAS  Google Scholar 

  • Neuenschwandcr, S., Gattass, R., Sousa, A. P. B., and Pinon, M. C. G. P., 1994, Identification and visuotopic organization of areas PO and POd in Cebus monkey, J. Comp. Neurol. 340: 65–86.

    Google Scholar 

  • Newsome, W. T., and Allman, J. M., 1980, Interhemispheric connections of visual cortex in the owl monkey, Aotus lrivirgatus, and the bushbaby, Galago senegalensis., J. Comp. Neurol. 194: 209–233.

    CAS  Google Scholar 

  • Newsome, W. T., Wurtz, R. H., Dursteler, M. R., and Mikami, A., 1985, Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey, J. Neurosci. 5: 825–840.

    PubMed  CAS  Google Scholar 

  • Newsome, W. T., Maunsell, J. H. R., and Van Essen, D. C., 1986, Ventral posterior visual area of the macaque: Visual topography and areal boundaries, J. Comp. Neurol. 252: 139–153.

    PubMed  CAS  Google Scholar 

  • Olavarria, J., and Torrealba, F., 1978, The effect of acute lesions of the striate cortex ou the reti- notopic organization of the lateral peristriate cortex in the rat, Brain Res. 151: 386–39I.

    PubMed  CAS  Google Scholar 

  • Olavarria, J. F., DeYoe, E. A., Knierim, J. J., Fox, J. M., and Van Essen, D. C., 1992, Neural responses to visual texture patterns in middle temporal area of the macaque monkey, J. Neurophy.siol. 68: 164–181.

    CAS  Google Scholar 

  • Paolini, M., Sereno, M. I., leo, R., Dobbins, A., and Allman, J. A., 1994, Organization of extrastriate cortex in the primitive primates, Cheirogaleus and Lemur, Soc. Neurosci. Abslr. 20: 427.

    Google Scholar 

  • Payne, B. R., and Siwek, D. F., 1990, Receptive fields of neurons at the confluence of cerebral cortical areas 17, 18, 20a, and 20b in the cat, Visual Neuroses. 4: 475–479.

    CAS  Google Scholar 

  • Pearson, J. C., Finkel, L. H., and Edelman, G. M., 1987, Plasticity in the organization of adult cerebral cortical maps: A computer simulation based on neuronal group selection, J. Neurosci. 7: 4209–4223.

    PubMed  CAS  Google Scholar 

  • Perkel, D. J., Bullier, J., and Kennedy, H., 1986, Topography of the afferent connectivity of area 17 in the macaque monkey: A double-labelling study, J. Comp. Neurol. 253: 374–402.

    PubMed  CAS  Google Scholar 

  • Perrett, D. I., Smith, P. A. J., Potter, D. D., Mistlin, A. J., Head, A. S., Milner, A. 1)., and Jeeves, M. A., 1985, Visual cells in the temporal cortex sensitive to face view and gaze direction, Proc. R. Soc. Loud. B 223: 293–317.

    CAS  Google Scholar 

  • Perrett, D. I., Harries, M. H., Mistlin, A. J., Hietanen, J. K., Benson, P. J., Bevan, R., Thomas, S., Oram, M. W., Ortega, J., and Brierley, K., 1990, Social signals analyzed at the single cell level: Someone is looking at me, something touched me, something moved! Int. J. Comp. Psycho(. 4: 25–55.

    Google Scholar 

  • Pessoa, V. F., Abrahâo, J. C. H., Pacheco, R. A., Pereira, L. C. M., Magalhäes-Castro, B., and Saraiva, P. E. S., 1992, Relative size of cortical visual areas in marmosets: Functional and phylogenetic implications, Exp. Brain Res. 88: 459–462.

    PubMed  CAS  Google Scholar 

  • Peterhans, E., and von der Heydt, R., 1993, Functional organization of area V2 in the alert macaque, Eur. J. Neurosci. 5: 509–524.

    PubMed  CAS  Google Scholar 

  • Peters, A., and Sethares, C., 1991, Organization of pyramidal neurons in area 17 of monkey visual cortex, J. Cone. Neurol. 306: 1–23.

    CAS  Google Scholar 

  • Peters, A., Payne, B. R., and Budd, J., 1994, A numerical analysis of the geniculocortical input to striate cortex in the monkey, Cerebral Cortex 4: 215–229.

    PubMed  CAS  Google Scholar 

  • Pettigrew, J., Jamieson, B. G. M., Robson, S. K., Hall, L. S., McAnally, K. 1., and Cooper, H. M., 1989, Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates), Phil. Trans. R. Soc. Loral. B 325: 489–559.

    CAS  Google Scholar 

  • Phillips, P., Semple, M. N., Calford, M. B., and Kitzes, L. M., 1994, Level-dependent representa-tion of stimulus frequency in cat primary auditory cortex, Exp. Brain Res. 102: 210–226.

    PubMed  CAS  Google Scholar 

  • Poggio, F., Torre, V., and Kochi, C., 1985, Computational vision and regularization theory, Nature 317: 314–319.

    PubMed  CAS  Google Scholar 

  • Preuss, T. M., Beck, P. 1)., and Kaas, J. H., 1993, Areal, modular, and connectional organization of visual cortex in a prosimian primate, the slow loris (Nyclicebus courang), Brain Behan. Evol. 42: 321–335.

    CAS  Google Scholar 

  • Raiguel, S. E., Lagac, H, Gulyas, B., and Orban, G. A., 1989, Response latencies of visual cells in macaque areas VI, V2 and V5, Brain Res. 493: 155–159.

    PubMed  CAS  Google Scholar 

  • Rakic, P., 1988, Specification of cerebral cortical areas, Science 241: 170–176.

    PubMed  CAS  Google Scholar 

  • Robinson, L., Goldberg, M. E., and Stanton, G. B., 1978, Parietal association cortex in the primate. Sensory mechanisms and behavioral modulations. J. Neurophysiol. 41: 910–932.

    CAS  Google Scholar 

  • Rockland, K. S., 1985, A reticular pattern of intrinsic connections in primate area V2 (area 18), J. Comp. Neurol. 235: 467–478.

    PubMed  CAS  Google Scholar 

  • Rockland, K. S., and Pandya, I). N., 1979, Laminar origin and terminations of cortical connections of the occipital lobe in the rhesus monkey, Brain Res. 179: 3–20.

    PubMed  CAS  Google Scholar 

  • Rodman, H. R., Gross, C. G., and Albright, T. D., 1989, Afferent basis of visual response properties in area MT of the macaque. 1. Effects of striate cortex removal, J. Neurosci. 9: 2033–2050.

    PubMed  CAS  Google Scholar 

  • Rodman, H. R., Gross, C. G., and Albright, T. D., 1990, Afferent basis of visual response properties in area Ml of the macaque. II. Effects of superior colliculus removal, J. Neurosci. 10: 1154–1164.

    CAS  Google Scholar 

  • Roe, A. W., and Iso, I). Y., 1995, Visual topography in primate V2: Multiple representations across functional stripes, J. Neurosci. 15: 3689–3715.

    PubMed  CAS  Google Scholar 

  • Rolls, E. T., and Cowey, A., 1970, Topography of the retina and striate cortex and its relationship to visual acuity in rhesus monkeys and squirrel monkeys, Exp. Brain Res. 10: 298–310.

    PubMed  CAS  Google Scholar 

  • Rosa, M. G. P., and Schmid, L. M., 1994, “topography and extent of visual-field representation in the superior colliculus of the neegachiropteran Pteropcs, Visual Neurosci. 11:1037–1057.

    Google Scholar 

  • Rosa, M. G. P., and Schmid, L. M., 1995, Visual areas in the dorsal and medial extrastriate cortices of the marmoset, J. comp. Neurol. 359: 272–299.

    PubMed  CAS  Google Scholar 

  • Rosa, M. G. P., Gattass, R., and Fiorani, M., 1988a, Complete pattern of ocular dominance stripes in VI of a New World monkey, Cehus apella, Exp. Brain Res. 72: 645–648.

    CAS  Google Scholar 

  • Rosa, M. G. P., Sousa, A. P. B., and Cat lass, R., 1988b, Representation of the visual field in the second visual area in the Cebus monkey, J. Comp. Neural. 275: 326–345.

    CAS  Google Scholar 

  • Rosa, M. G. y, Gattass, R., and Soares, J. G. M., 1991, A quantitative analysis of cytochronee oxidaserich patches in the primary visual cortex of Cehus monkeys: Topographic distribution and effects of late monocular euucleation, Exp. Brain Res. 84: 195–209.

    PubMed  CAS  Google Scholar 

  • Rosa, M. G. P., Schmid, L. M., Krubitzer, L. A., and Pettigrew, J. 1)., 1993a, Retinotopic organization of the primary visual cortex of flying foxes (Pteropus poliocephalus and Pteropus scapula J us). J. Comp. Neural. 335: 55–72.

    Google Scholar 

  • Rosa, M. G. P., Snares, J. G. M., Fiorani, M., and Gattass, R., 1993b, Cortical afferents of visual area MT in the Cehus monkey: Possible homologies between New and Old World monkeys, Visual Neurosci. 10: 827–855.

    CAS  Google Scholar 

  • Rosa, M. G. P., Schmid, L. M., and Pettigrew, J. D., 1994, Organization of the second visual area in the megachiropteran bat Plero J ms, Cerebral Cortex 4: 52–68.

    CAS  Google Scholar 

  • Rosa, M. G. P., Schmid, L. M., and Gafford, M. B., 1995a, Responsiveness of cat area 17 after monocular inactivation: Limitation of topographic plasticity in adult cortex, J. Physiol. (Load.) 482: 589–608.

    CAS  Google Scholar 

  • Rosa, M. G. P., Schmid, L. M., and Clarey, J. C., 1995b, Visual areas in the extrastriate cortex of the marmoset, Soc. Neurosci. Abslr. 21: 903.

    Google Scholar 

  • Rosa, M. G. P., Casagrande, V. A., Preuss, L, and Kaas, J. H., 1997a, Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetli), J. Neurophyslol. 77: 3193–3217.

    CAS  Google Scholar 

  • Rosa, M. G. P., Fritsches, K. A., and Elston, G. N., 1997b, The second visual area in the marmoset monkey: Magnification factors, architectural boundaries, and modularity, J. Comp. Neurol. in press.

    Google Scholar 

  • Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y., and Iwai, E., 1986, Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey, J. Neurosci. 6: 145–157.

    PubMed  CAS  Google Scholar 

  • Salin, P.-A., and Bullier, J., 1995, Corticocortical connections in the visual system: Structure and function, Physiol. Rev. 75: 107–154.

    PubMed  CAS  Google Scholar 

  • Schein, S. J., and Desimone, R., 1990, Spectral properties of V4 neurons in the macaque, J Neurosci. 10: 3369–3389.

    PubMed  CAS  Google Scholar 

  • Schein, S. J., Marrocco, R. 1., and DeMonasterio, F. M., 1982, Is there a high concentration of color-selective cells in area V4 of monkey visual cortex? J. Neurophysiol. 47: 193–213.

    Google Scholar 

  • Schiller, P. H., and Malpeli, J. G., 1977, The effect of cooling striate cortex on area 18 cells in the monkey, Brain Iles. 126: 366–369.

    CAS  Google Scholar 

  • Schmid, L. M., Rosa, M. G. P., and Calford, M. B., 1995, Retinal detachment induces massive immediate reorganization in visual cortex, NeuroReport 6: 1349–1353.

    PubMed  CAS  Google Scholar 

  • Schmid, L. M., Rosa, M. G. P., Calford, M. B., and Ambler, J. S., 1996, Visuotopic reorganisation in the primary visual cortex of adult cats following monocular and binocular retinal lesions, Cerebral Cortex 6: 388–405.

    PubMed  CAS  Google Scholar 

  • Schmidt, J. F., 1985, Formation of retinotopic connections: Selective stabilization by an activity-dependent mechanism, Cell. Mol. Neurobiol. 5: 65–84.

    Google Scholar 

  • Schreiner, C. E., 1991, Functional topographies in the primary auditory cortex of the cat, Acta Otolaryngol. Suppl. 491: 7–16.

    PubMed  CAS  Google Scholar 

  • Schreiner, C. E., 1995, Order and disorder in auditory cortical maps, Curr. Opin. Neurobiol. 5: 489–496.

    PubMed  CAS  Google Scholar 

  • Schreiner, C. E., and Sutter, M. L., 1992, Topography of excitatory bandwidth in cat primary auditory cortex: Single-neuron versus multiple-neuron recordings, J. Neurophysiol. 68: 1487–1502.

    PubMed  CAS  Google Scholar 

  • Schwartz, FI. 1., 1977, Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception, Biol. Cybernel. 25: 181–194.

    Google Scholar 

  • Sereno, M. l., and Allman, J. M., 1991, Cortical visual areas in mammals, in: Vision and Visual Dysfunction, Volume 4, The Neural Basis of Visual Function ( A. G. Leventhal, ed.), Macmillan, London, pp. 160–172.

    Google Scholar 

  • Sereno, M. I., McDonald, C. T., and Allman, J. M., 1987, Multiple visual areas between V2 and MT in the owl monkey, Soc. Neurosci. Abstr. 13: 625.

    Google Scholar 

  • Sereno, M. 1., McDonald, C. T., and Allman, J. M., 1994, Analysis of retinotopic maps in extrastriate cortex, Cerebral Cortex 4: 601–620.

    CAS  Google Scholar 

  • Sereno, M. I., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W., Brady, F. J., Rosen, B. R., and lbotell, R. B. H., 1995, Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging, Science 268: 889–893.

    CAS  Google Scholar 

  • Sesma, M. A., Casagrande, V. A., and Kaas, J. H., 1984, Cortical connections of area 17 in tree shrews, J. Comp. Neurol. 230: 337–351.

    PubMed  CAS  Google Scholar 

  • Sherk, H., 1978, Area 18 cell responses in the cat during reversible inactivation of area 17, J. Neurophysiol. 41: 204–215.

    PubMed  CAS  Google Scholar 

  • Sherk, H., and Mulligan, K., 1992, Retinotopic order is surprisingly good within cell columns in the cats lateral suprasylvian cortex, Exp. Brain Res. 91: 46–60.

    PubMed  CAS  Google Scholar 

  • Sherk, H., and Mulligan, K. A., 1993, A reassessment of the lower visual field map in striate-recipient lateral suprasylvian cortex, Visual Neurosci. 10: 131–158.

    CAS  Google Scholar 

  • Shimizu, T., Cox, K., and Karten, H. J., 1995, Intratelencephalic projections of the visual wulst in pigeons (Columba livia), J. Comp. Neurol. 359: 551–572.

    PubMed  CAS  Google Scholar 

  • Shipp, S., and Zeki, S., 1989, The organization of connections between area V5 and V2 in macaque monkey visual cortex, Fur. J. Neurosci. 1: 333–354.

    CAS  Google Scholar 

  • Sillito, A. M., 1984, Functional considerations of the operation of GABAergic inhibitory processes in the visual cortex, in: Cerebral Cortex, Volume 2, Functional Properties ofCortical Cells ( E. G. Jones, and A. Peters, eds.), Plenum Press, New York, pp. 91–117.

    Google Scholar 

  • Singer, W., 1994, Coherence as an organizing principle of cortical functions, lot. Rev. Neurobiol. 37: 153–183.

    CAS  Google Scholar 

  • Sousa, A. P. B., Pinon, M. C. G. P., Gattass, R., and Rosa, M. G. P., 1991, Topographic organization of cortical input to striate cortex in the Cebus monkey: A fluorescent tracer study, J. Comp. Neurol. 308: 665–682.

    PubMed  CAS  Google Scholar 

  • Spatz, W. B., 1977, Topographically organized reciprocal connections between areas 17 and MT (visual area of the superior temporal sulcus) in the marmoset Callithrix jacchus, Exp. Brain Res. 27: 559–572.

    CAS  Google Scholar 

  • Spatz, W. B., and Figges,J., 1972, Species difference between Old World and New World monkeys in the organization of the striate—prestriate association, Brain Res. 43: 591–594.

    PubMed  CAS  Google Scholar 

  • Spatz, W. B.,Figges,J., and Tigges, M., 1970, Subcortical projections, cortical associations, and some intrinsic interlaminar connections of the striate cortex in the squirrel monkey (Saimiri), J. Comp. Neurol. 140: 155–174.

    Google Scholar 

  • Sperry, R. W., 1963, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Natl. Acad. Sci. USA 50: 703–709.

    PubMed  CAS  Google Scholar 

  • Steele, G. E., Weller, R. E., and Cusick, C. G., 1991, Cortical connections of the caudal subdivision of the dorsolateral area (V4) in monkeys, J. Comp. Neurol. 306: 495–520.

    PubMed  CAS  Google Scholar 

  • Stepniewska, I., and Kaas, J. H., 1996, Topographic patterns of V2 cortical connections in macaque monkeys, J. Comp. Neurol. 371: 129–152.

    PubMed  CAS  Google Scholar 

  • Stuermer, C. A. O., 1991, The formation of topographically ordered connections during development and regeneration of the vertebrate visual system, in: Vision and Visual Dysfunction, Volume II, Development anti Plasticity of the Visual System ( J. Cronly-Dillon, ed.), Macmillan, London, pp. 88–111.

    Google Scholar 

  • Sutherland, N. S., 1973, Object recognition, in: Handbook of Perception, Volume III, Biology of Perceptual Systems (E. C. Carterette, and M. l. Friedman, eds.), Academic Press, New York, pp. 157–185.

    Google Scholar 

  • Sutter, M. L., and Schreiner, C. E., 1991, Physiology and topography of neurons with multipeaked tuning curves in cat primary auditory cortex, J. Neurophysiol. 65: 1207–1226.

    PubMed  CAS  Google Scholar 

  • Swindale, N. V., 1991, Coverage and the design of striate cortex, Biol. Cybernet. 65: 415–426.

    CAS  Google Scholar 

  • Talbot, S. A., 1942, A lateral localization in the cats visual cortex, Fed. Proc. 1: 84.

    Google Scholar 

  • Tanaka, K., Hikosaka, K., Saito, H., Yukie, M., Fukada, Y., and Iwai, E., 1986, Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey, J Neurosci. 6: 134–144.

    PubMed  CAS  Google Scholar 

  • Tigges,., Spatz, W. B., and Figges, M., 1974, Efferent cortico-cortical fibre connections of area 18 in the squirrel monkey (Saimiri), J. Comp. Neurol. 158: 219–236.

    Google Scholar 

  • Tigges, f., Tigges, M., Anschel, S., Cross, N. A., l.etbetter, W. D., and McBride, R. L., 1981, Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19 and MT in squirrel monkey (Saimiri), J. Comp. Neural. 202: 539–560.

    CAS  Google Scholar 

  • Tootell, R. B. H., and Hamilton, S. L., 1989, Functional anatomy of the second visual area (V2) in the macaque, J. Neurosci. 9: 2620–2644.

    PubMed  CAS  Google Scholar 

  • Tbotell, R. B. H., and Taylor,J. B., 1995, Anatomical evidence for MT and additional cortical visual areas in humans, Cerebral Cortex 5: 39–55.

    Google Scholar 

  • Tootell, R. B. H., Silverman, M. S., Switkes, E., and DeValois, R. L., 1982, Deoxyglucose analysis of retinotopic organization in primate striate cortex, Science 218: 902–904.

    PubMed  CAS  Google Scholar 

  • Tootell, R. B. H., Silverman, M. S., 1)e Valois, R. L., and Jacobs, G. H., 1983, Functional organization of the second cortical visual area of primates, Science 220: 737–739.

    CAS  Google Scholar 

  • Tootell, R. B. H., Hamilton, S. I., and Silverman, M. S., 1985, Topography of cytochrome oxidase activity in the owl monkey cortex, J. Neurosci. 5: 2786–2800.

    PubMed  CAS  Google Scholar 

  • Tootell, R. B. H., Switkes, E., Silverman, M. S., and Hamilton, S. L., 1988, Functional anatomy of macaque striate cortex. 11. Retinotopic organization, J. Neurosci. 8: 1531–1568.

    PubMed  CAS  Google Scholar 

  • Tripathy, S., Levi, D. M., Ogmen, H., and Harden, C., 1995, Perceived length across the physiological blind spot, Visual Neurosci. 12: 385–402.

    CAS  Google Scholar 

  • Tusa, R. J., Rosenquist, A. C., and Palmer, I., A., 1979, Retinotopic organization of areas 18 and 19 in the eat, J Comp. Neural. 185: 657–678.

    Google Scholar 

  • Ungerleider, 1., G., and Desimone, R., 1986, Projections to the superior temporal sulcus from the central and peripheral field representations of VI and V2, J. Comp. Neural. 248: 147–163.

    Google Scholar 

  • Ungerleider, I., G., and Mishkin, M., 1979, The striate projection zone in the superior temporal sulcus of Macaca mulatta: Location and topographic organization, J Comp. Neural. 188: 347–366.

    Google Scholar 

  • Ungerleider, L. G., and Mishkin, M., 1982, Two cortical systems, in: Analysis of Visual Behavior ( D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield, eds.), MIT Press, Cambridge, MA, pp. 549–586.

    Google Scholar 

  • Van Essen, D. C., 1985, Functional organization of primate visual cortex, in: Cerebral Cortex, Volume 3, Visual Cortex ( A. Peters, and E. G. Jones, eds.), Plenum Press, New York, pp. 259–329.

    Google Scholar 

  • Van Essen, D. C., and Anderson, C. H., 1990, Information processing strategies and pathways in the primate retina and visual cortex, in: An Introduction to Neural and Electronic Networks (S. F. Zornetzer, J. I., Davis, and C. Lau, eds.), Academic Press, New York, pp. 43–72.

    Google Scholar 

  • Van Essen, D. C., and Zeki, S. M., 1978, The topographic organization of rhesus monkey prestriate cortex, J Physiol. (Lond.) 277: 193–226.

    CAS  Google Scholar 

  • Van Essen, D. C., Maunsell, J. H. R., and Bixby, J. I., 1981, The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization, J. Comp. Neurol. 199: 293–326.

    PubMed  Google Scholar 

  • Van Essen, D. C., Newsome, W. L, and Bixby, J. I., 1982, The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey, J Neurosci. 2: 265–283.

    Google Scholar 

  • Van Essen, D. C., Newsome, W. L, Maunsell, J. H. R., and Bixby, J. I., 1986, “Ihc projections from striate cortex (VI) to areas V2 and V3 in the macaque monkey: Asymmetries, areal bounderies, and patchy connections, J Comp. Neurol. 244: 451–480.

    Google Scholar 

  • Van Essen, D. C., Felleman, D. J., DeYoe, E. A., Olavarria, J., and Knierim, J., I990, Modular and hierarchical organization of extrastriate visual cortex in the macaque monkey, Cold Spring Harbor Symp. Quant. Biol. 55: 679–696.

    Google Scholar 

  • Vidyasagar, T. R., 1996, Attentional searchlight gates responses of neurones in macaque primary visual cortex, Proc. Ausl. Neurosci. Soc. 7: 36.

    Google Scholar 

  • Von Bonin, G., and Bailey, P., 1947, The Neocortex of Maraca mulatta, University of Illinois Press, Urbana, IL.

    Google Scholar 

  • Wagor, E., Lin, C. S., and Kaas, J. H., 1975, Some cortical projections of the dorsomedial visual area (I)M) of association cortex in owl monkey, Aotus trivirgalus, J. Comp. Neural. 163: 227–250.

    CAS  Google Scholar 

  • Wall, J. T., Symonds, L. L., and Kaas, J. H., 1982, Cortical and subcortical projections of the middle temporal area (MT) and adjacent cortex in Galagos, J. Comp. Neurol. 211: 193–214.

    PubMed  CAS  Google Scholar 

  • Wassle, H., Grünet, U., Rührenbeck, J., and Boycott, B., 1990, Retinal ganglion cell density and cortical magnification factor in the primate, Vision Res. 30: 1897–1911.

    PubMed  CAS  Google Scholar 

  • Watson, J. G., Myers, R., Frackowiak, R. S. J., Hajnal, J. V., Woods, R. P., Mazziotta, J. C., Shipp, S., and Zeki, S. M., 1993, Area V5 of the human brain: Evidence from a combined study using positron emission tomography and magnetic resonance imaging, Cerebral Cortex 3: 79–94.

    PubMed  CAS  Google Scholar 

  • Weller, R. E., and Kaas, J. H., 1983, Retinotopic patterns of connections of area 17 with areas V-II and MT in macaque monkeys, J Comp. Neurol. 220: 253–279.

    PubMed  CAS  Google Scholar 

  • Weller, R. E., and Steele, G. E., 1992, Cortical connections of subdivisions of inferior temporal cortex in squirrel monkeys, J. Comp. Neural. 324: 37–66.

    CAS  Google Scholar 

  • Weller, R. E., Wall, J. T., and Kaas, J. H., 1984, Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys, J. Comp. Neurol. 228: 81–104.

    PubMed  CAS  Google Scholar 

  • Weller, R. E., Steele, G. E., and Cusick, C. G., 1991, Cortical connections of dorsal cortex rostra to V-I1 in squirrel monkeys, J. Comp. Neural. 306: 521–537.

    CAS  Google Scholar 

  • Westheimer, G., 1982, The spatial grain of the perifoveal visual field, Vision Res. 22: 157–162.

    PubMed  CAS  Google Scholar 

  • Wiitanen, J. T., 1969, Selective silver impregnation of degenerating axons and axon terminals in the central nervous system of the monkey (Macaca mulatta), Brain Res. 14: 546–548.

    PubMed  CAS  Google Scholar 

  • Wilder, H., Grünert, U., Lee, B. B., and Martin, P. R., 1996, Topography of ganglion cells and photoreceptors in the retina of the New World marmoset monkey Callithrix jardins, Visual Neurosci. 13: 335–352.

    CAS  Google Scholar 

  • Wolf, F., Bauer, H.-U., and Geisel, TL, 1994, Formation of field discontinuities and islands in visual cortical maps, Biol. Cybernet. 70: 525–531.

    CAS  Google Scholar 

  • Wong-Riley, M., Hevner, R. F., Cutlan, R., Earnest, M., Egan, R., Frost, J., and Nguyen, f., 1993, Cytochrome oxidase in the human visual cortex: Distribution in the developing and adult brain, Visual Neurosci. 10: 41–58.

    CAS  Google Scholar 

  • Woolsey, C. N., Akert, K., Benjamin, R. M., Leibowitz, 11., and Welker, W. 1., 1955, Visual cortex of the marmoset, Fed. Proc. 14: 166.

    Google Scholar 

  • Wright, M. J., 1969, Visual receptive fields of cells in a cortical area remote from striate cortex in the cat, Nature 223: 973–975.

    PubMed  CAS  Google Scholar 

  • Wurtz, R. H., Yamasaki, D. S., Duffy, C. J., and Roy, J. P., 1990, Functional specialization for visual motion processing in primate cerebral cortex, Cold Spring Harbor Symp. Quant. Biol. 55: 717–727.

    PubMed  CAS  Google Scholar 

  • Zeki, S. M., 1969, Representation of central visual fields in prestriate cortex of monkey, Brain Res. 14: 271–291.

    CAS  Google Scholar 

  • Zeki, S. M., 1970, Interhemispheric connections of prestriate cortex in monkey, Brain Res. 19: 63–75.

    PubMed  CAS  Google Scholar 

  • Zeki, S. M., 1971, Cortical projections from two prestriate areas in the monkey, Brain Res. 34: 19–35.

    PubMed  CAS  Google Scholar 

  • Zeki, S. M., 1974, Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey, J. Physiol. (Fond.) 236: 549–573.

    CAS  Google Scholar 

  • Zeki, S. M., 1977, Simultaneous anatomical demonstration of the representation of the vertical and horizontal meridians in areas V2 and V3 of rhesus monkey visual cortex, Proc. R. Soc. Lond. B 195: 517–523.

    PubMed  CAS  Google Scholar 

  • Zeki, S. M., 1978a, The third visual complex of rhesus monkey prestriate cortex, J. Physiol. (Lond.) 277: 245–272.

    CAS  Google Scholar 

  • Zeki, S. M., I978b, Uniformity and diversity of structure and function in rhesus monkey prestriate cortex, J. Physiol. (Lund.) 277: 273–290.

    Google Scholar 

  • Zeki, S. M., 1983a, Colour coding in the cerebral cortex: “File reaction of cells in monkey visual cortex to wavelengths and colours, Neuroscience 9: 741–765.

    PubMed  CAS  Google Scholar 

  • Zeki, S. M., 1983b, Colour-coding in the cerebral cortex: Elie responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition, Neuroscience 9: 767–781.

    PubMed  CAS  Google Scholar 

  • Zeki, S. M., 1983c, The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex, Proc. R. Soc. Loud. 217: 449–470.

    CAS  Google Scholar 

  • Zeki, S. M., and Sandeman, I. R., 1976, Combined anatomical and electrophysiological studies on the boundary between the second and third visual areas of rhesus monkey cortex, Proc. R. Soc. Loud. B 194: 555–562.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosa, M.G.P. (1997). Visuotopic Organization of Primate Extrastriate Cortex. In: Rockland, K.S., Kaas, J.H., Peters, A. (eds) Extrastriate Cortex in Primates. Cerebral Cortex, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9625-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9625-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9627-8

  • Online ISBN: 978-1-4757-9625-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics