Skip to main content

Development and Plasticity of Extrastriate Visual Cortex in Monkeys

  • Chapter
Extrastriate Cortex in Primates

Part of the book series: Cerebral Cortex ((CECO,volume 12))

Abstract

The extrastriate visual cortex of the monkey has in recent decades come to include an ever-expanding portion of the neocortical domain as more and more traditional “association” or even motor territories are shown to have significant visual connections, visual responsiveness, or role in visual behavior (Felleman and van Essen, 1991; also see the chapter by Gross in this volume). In this chapter, discussion will be restricted (or broadened, depending upon one’s viewpoint) to consideration of cortical zones shown to have at least some visual sensory responsiveness and direct connectivity with other, unimodal visual areas. First, we will consider the normal anatomical, physiological, and metabolic development of extrastriate visual cortex, including the prenatal specification of visual areas. Next, we will discuss the plasticity of extrastriate visual cortex in adulthood by examining the ability of extrastriate areas to function in parallel with striate cortex and the consequences of damage to extrastriate cortex in adult monkeys. In addition, we will examine evidence for learning-or experience-dependent plasticity in the response properties of neurons in extrastriate cortex. In the subsequent section, we will address the special plasticity associated with damage to visual cortex in developing animals. We will then briefly compare the development and plasticity of extratriate cortex in monkeys with phenomena described for other mammalian groups. In the final section, we will summarize the data presented and comment on general principles of extrastriate and cerebral cortical development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aigner, T. G., Walker, 1). L., and Mishkin, M., 1991, Comparison of the effects of scopolamine administered before and after acquisition in a test of visual recognition memory in monkeys, Beluiv. Neural Biol. 55: 61–67.

    CAS  Google Scholar 

  • Alexander, G. E., Witt, E. D., and Goldman-Rakic, P. S., 1980, Neuronal activity in the prefrontal cortex, caudate nucleus and mediodorsal thalamic nucleus during delayed response performance of immature and adult rhesus monkeys, Neurosci. Abstr. 6: 88.

    Google Scholar 

  • Bachevalier, J., 1990, Ontogenctic development of habit and memory formation in primates, in: Develolnnent and Neural Bases of Higher Cognitive Functions (A. Diamond, ed.), Academic Press, New York, pp. 457–484.

    Google Scholar 

  • Bachevalier, J., Hagger, C., and Mishkin, M., 1991, Functional maturation of the occipitotemporal pathway in infant rhesus monkeys, in: Brain Work and Mental Activity (N. A. Lassen, M. FI. Raichle, and L. Friberg, eds.), Munksgaard, Copenhagen, pp. 231–242.

    Google Scholar 

  • Barbur, J. 1.., Watson, 1. D., Frackowiak, R. S., and Zeki, S., 1993, Conscious visual perception without V1, Brain 116: 1293–1302.

    Google Scholar 

  • Barone, P., Dehay, C., Berland, M., and Kennedy, H., I 994a, Developmental changes in the distribution of acetylcholinesterase in the extrastriate visual cortex of the monkey, Dev. Brain Res. 77: 290–294.

    Google Scholar 

  • Barone, P., Dehay, C., Berland, M., and Kennedy, H., 1994b, Segregation of functional visual pathway in the prenatal monkey, Neurosci. Abstr. 20: 215.

    Google Scholar 

  • Barone, P., Dehay, C., Berland, M., Bullier, J., and Kennedy, H., 1995, Developmental remodeling of primate visual cortical pathways, Cerebral Cortex 1: 22–58.

    Google Scholar 

  • Bender, D. B., 1983, Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus, Brain Res. 279: 258–261.

    PubMed  CAS  Google Scholar 

  • Berger, B., Febvret, A., Greengard, P., and Goldman-Rakic, P. S., 1990, DARPP-32, a phosphoprotein enriched in dopaminoceptive neurons bearing dopamine DI receptors: Distribution in the cerebral cortex of the newborn and adult rhesus monkey, J. Comp. Neurol. 299: 327–348.

    PubMed  CAS  Google Scholar 

  • Berman, N. E., and Payne, B. R., 1988, Development and plasticity of visual interhemispheric connections, in: Advances in Neural and Behavioral Development, Volume 3 (P. Shinkman, ed.), Ablex Press, Norwood, NJ.

    Google Scholar 

  • Blakemore, C., and Vital-Durand, F., 1981, Postnatal development of the monkey’s visual system, CIBA Symp. 86: 152–171.

    CAS  Google Scholar 

  • Blythe, L M., Kennard, C., and Ruddock, K. H., 1987, Residual vision in patients with retrogeniculate lesions of the visual pathways, Brain 110: 887–905.

    PubMed  Google Scholar 

  • Bruce, C., Desimone, R., and Gross, C. G., 1986, Both striate cortex and the superior colliculus contribute to visual properties of neurons in the superior temporal polysensory area of the macaque, J. Neurophy.siol. 5: 1057–1075.

    Google Scholar 

  • Bullier, J., Girard, P., and Salin, P.-A., 1994, Flic role of area 17 in the transfer of information to extrastriate visual cortex, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates ( A. Peters and K. S. Rockland, eds.), Plenum Press, New York, pp. 301–330.

    Google Scholar 

  • Burkhalter, A., 1993, Development of forward and feedback connections between areas V1 and V2 of human visual cortex, Cerebral Cortex 3: 476–487.

    PubMed  CAS  Google Scholar 

  • Campion, J., Latto, R., and Smith, Y. M., 1983, Is blindsight an effect of scattered light, spared cortex, and near-threshold vision? Behay. Brain Soi. 6: 423–486.

    Google Scholar 

  • Clark, C. R., G. M. Geffen, and L. B. Geffen, 1987, Catecholamines and attention. I. Animal and clinical studies, Neurosci. Biobehay. Rev. 11: 341–352.

    CAS  Google Scholar 

  • Colombo, M., and Gross, C. G., 1994, Responses of inferior temporal and hippocampal neurons during delayed matching-to-sample in monkeys (macaca fascicularis), Behay. Neurosci. 108: 443455.

    Google Scholar 

  • Cowey, A., and Stoerig, P., 1989, Projection patterns of surviving neurons in the dorsal lateral geniculate nucleus following discrete lesions of striate cortex: Implications for residual vision, Exp. Brain Res. 75: 631–638.

    PubMed  CAS  Google Scholar 

  • Cowey, A., and Stoerig, P., 1991, The neurobiology of blindsight, Trends Neurosci. 14: 14–145.

    Google Scholar 

  • Cowey, A., and Stoerig, P., 1995, Blindsight in monkeys, Nature 373: 247–249.

    PubMed  CAS  Google Scholar 

  • Cowey, A., Stoerig, P., and Perry, V. H., 1989, ‘Fransneuronal retrograde degeneration of retinal ganglion cells after damage to striate cortex in macaque monkeys: selective loss of Pß cells, Neuroscience 29: 65–80.

    Google Scholar 

  • Cowey, A., Stoerig, P., and Bannister, M., 1994, Retinal ganglion cells labelled from the pulvinar nucleus in macaque monkeys, Neuroscience 61: 691–705.

    PubMed  CAS  Google Scholar 

  • Cusick, C. G., and Lund, R. 1)., 1982, Modification of visual callosal projections in rats, J. Comp. Neural. 212: 385–398.

    Google Scholar 

  • Dehay, C., and Kennedy, H., 1988, The maturational status of thalamocortical and callosal connec- tions of visual areas VI and V2 in the newborn monkey, Behay. Brain Res. 29: 237–244.

    CAS  Google Scholar 

  • Dehay, C., and Kennedy, H., 1993, Control mechanisms of primate corticogenesis, in: Functional Organisation of the Human Cerebral Cortex (B. Gulyas, 1 ). Ottoson, and P. E. Roland, eds.), Pergamon Press, Oxford, pp. 13–27.

    Google Scholar 

  • Dehay, C., Kennedy, H., and Bullier, J., 1986, Callosal connectivity of areas VI and V2 in the newborn monkey, J. Comp. Neuron. 254: 20–33.

    CAS  Google Scholar 

  • Dehay, C., Kennedy, H., Bullier, J., and Berland, M., 1988, Absence of interhemispheric connections of area 17 during development in the monkey, Nature 331: 348–350.

    PubMed  CAS  Google Scholar 

  • Dehay, C., Girond, P., Berland, M., Smart, 1., and Kennedy, H., 1993, Modulation of the cell cycle contributes to the parcellation of the primate visual cortex, Nature 366. 464–466.

    CAS  Google Scholar 

  • Desimone, R., and Gross, C. G., 1979, Visual areas in the temporal cortex of the macaque, Brain Res. 178: 363–380.

    PubMed  CAS  Google Scholar 

  • Desimone, R., and Ungerleider, L. G., 1989, Neural mechanisms of visual perception in monkeys, in: Handbook of Neuropsychology, Volume II ( R. Boller and J. Grafman, eds), Elsevier, Amsterdam, 267–299.

    Google Scholar 

  • Desimone, R., Miller, E. K., Chelazzi, L., and Lueschow, A., 1994, Multiple memory systems in the visual cortex, in: The Cognitive Neurosciences ( M. S. Gazzaniga, ed.), MIT Press, Cambridge, MA, 475–486.

    Google Scholar 

  • Diamond, I. ‘l’., Fitzpatrick, 1)., and Sprague, J. M., 1985, The extrastriate visual cortex: A historical approach to the relation between “visuo-sensory” and “visuo-psychic” areas, in: Cerebral Cortex, Volume 4, Association and Auditory Cortices ( A. Peters and E. G. Jones, eds.), Plenum Press, New York.

    Google Scholar 

  • Dineen, J. “F., and Hendrickson, A. E., 1981, Age-correlated differences in the amount of retinal degeneration after striate cortex lesions in monkeys, Invest. Ophthalmol. Vis. Sci. 21: 749–752.

    Google Scholar 

  • Distler, C., Ungerleider, L. G., Bachevalier, J., and Mishkin, M., 1990, Functional development of the cortical visual pathway for motion analysis in rhesus monkeys, Neurosci. Abstr. 16: 5.

    Google Scholar 

  • Dobkins, K. R., and Teller, D. Y., 1996, Infant contrast detectors are selective for direction of motion, Vision Res. 36: 281–294.

    PubMed  CAS  Google Scholar 

  • Felleman, 1). J., and Van Essen, D. C., 1991, Distributed hierarchical processing in primate cerebral cortex, Cerebral Cortex 1: 1–48.

    Google Scholar 

  • Flechsig, P., 1876, Die Leitungsbahnen lm Gehirn und Ruckennuark des Menschen auf Grund Entwicklungsgeschichtlicher Untersuchungen, Engelmann, I.iepzig.

    Google Scholar 

  • Foote, S. L., and Morrison, J. H., 1987, Development of the noradrenergic, serotonergic, and dopaminergic innervation of neocortex, Curr. Top. Dev. Biol. 21: 391–423.

    PubMed  CAS  Google Scholar 

  • Fuster, J. M., 1990, Inferotemporal units in selective visual attention and short-term memory, J. Neurophysiol. 64: 681–697.

    PubMed  CAS  Google Scholar 

  • Galletti, C., and Battaglini, P. P., 1989, Gaze-dependent visual neurons in area V3A of monkey prestriate cortex, J. Neurosci. 9: 1112–1125.

    PubMed  CAS  Google Scholar 

  • Garey, L. J., and Saini, K. D., 1981, Golgi studies of the normal development of neurons in the lateral geniculate nucleus of the monkey, Exp. Brain Res. 44: 117–128.

    PubMed  CAS  Google Scholar 

  • Gattass, R., and Gross, C. G., 1981, Visual topography of the striate projection zone in the posterior superior temporal sulcus (MT) of the macaque, J. Neurophysiol. 46: 621–638.

    PubMed  CAS  Google Scholar 

  • Gilbert, C. D., 1993, Rapid dynamic changes in adult cerebral cortex, Curr. Opin. Neurobiol. 3: 100–103.

    PubMed  CAS  Google Scholar 

  • Girard, P., Salin, P. A., and Bullier, J., 1992, Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area VI, J. Neurophysiol. 67: 1437–1446.

    PubMed  CAS  Google Scholar 

  • Goldman, P. S., 1972, Developmental determinants of cortical plasticity, Acta Neural. Exp. 32: 495–511.

    CAS  Google Scholar 

  • Goldman-Rakic, P. S., 1987, Development of cortical circuitry and cognitive function, Child Dev. 58: 601–622.

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic, P. S., and Brown, R. M., 1982, Postnatal development of monoamine content and synthesis in the cerebral cortex of rhesus monkeys, Dev. Brain Res. 4: 339–349.

    CAS  Google Scholar 

  • Gross, C. G., 1973, Inferotemporal cortex and vision, Prog. Physiol. Psychol. 5: 77–123.

    Google Scholar 

  • Gross, C. G., 1991, Contributions of striate cortex and the superior colliculus to visual function in area MT, the superior temporal polysensory area and the inferior temporal cortex, Neuropsychologia 29: 487–515.

    Google Scholar 

  • Gross, C. G., Bender, D. B., and Gerstein, G. L., 1979, Activity of inferior temporal neurons in behaving monkeys, Neuropsychologie. 7: 215–229.

    Google Scholar 

  • Gross, C. G., Rodman, H. R., Gochin, P. M., and Colombo, M. W., 1993, Inferior temporal cortex as a pattern recognition device, in: Proceedings of the Third Annual NEC Research Symposium ( E. Baum, ed.), SIAM Press, Philadelphia, pp. 44–73.

    Google Scholar 

  • Guido, W., Spear, P. D., and Tong, L., 1990, Functional compensation in the lateral suprasylvian visual area following bilateral visual cortex damage in kittens, Exp. Brain Res. 83: 219–224.

    PubMed  CAS  Google Scholar 

  • Haenny, P. E., and Schiller, P. H., 1988, State dependent activity in monkey visual cortex. I. Single cell activity in V 1 and V4 on visual tasks, Exp. Brain Res. 69: 225–244.

    PubMed  CAS  Google Scholar 

  • Harting, J. K., Huerta, M. F., Hashikawa, T., and van Lieshout, D. P., 1991, Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: Organization of tectogeniculate pathways in nineteen species, J. Comp. Neural. 304: 275–306.

    CAS  Google Scholar 

  • Hayashi, M., and Oshima, K., 1986, Neuropeptides in cerebral cortex of macaque monkey (Maraca fuscata /uscala): Regional distribution and ontogeny, Brain Res. 364: 360–368.

    PubMed  CAS  Google Scholar 

  • Hayashi, M., Yamashita, A., Shimizu, K., and Oshima, K., 1989, Ontogeny of cholecystokinin-8 and glutamic acid decarboxylase in cerebral neocortex of macaque monkey, Exp. Brain Res. 74: 249–255.

    PubMed  CAS  Google Scholar 

  • Holmes, G., 1918, Disturbances of visual orientation, Br. J. Ophthalmol. 2: 449–486.

    PubMed  CAS  Google Scholar 

  • Innocenti, G. M., 1981a, Transitory’ structures as substrate for developmental plasticity of the brain, in: Functional Recovery from Brain Damage ( M. W. van Hof and G. Mohn, eds.), Elsevier, Amsterdam, pp. 305–333.

    Google Scholar 

  • Innocenti, G. M., 198Ib, Role of axon elimination in the development of visual cortex, in: Development of Visual Pathways in Mammals, Liss, New York, pp. 243–253.

    Google Scholar 

  • Innocenti, G. M., and Clarke, S., 1984a, The organization of immature callosal connections,/ Comp. Neurol. 23: 287–309.

    Google Scholar 

  • Innocenti, G. M., and Clarke, S., I984b, Bilateral transitory projection to visual areas troni auditory cortex in kittens, Dev. Brain Res. 14: 143–148.

    Google Scholar 

  • Johnson, M. H., 1990, Cortical maturation and the development of visual attention in early infancy, J. Cognitive Neurosci. 26: 81–95.

    Google Scholar 

  • Kaas, J. H., and Huerta, J. F., 1988, The subcortical visual system of primates, in: Comparative Primate Biology, Volume 4 ( H. Steklis and J. Erwin, eds.), Liss, New York, 327–39I.

    Google Scholar 

  • Kaas, J. H., and Krubitzer, L. A., 1991, Area 17 lesions deactivate area MT in owl monkeys, Visual Neurosci. 9: 399–407.

    Google Scholar 

  • Kasamatsu, T., 1987, Norepinephrine hypothesis for visual cortical plasticity: Thesis, antithesis, and recent development, Curr. Top. Dev. Biol. 21: 367–389.

    PubMed  CAS  Google Scholar 

  • Kennedy, H., and Dehay, C., 1993, Cortical specification of mice and men. Cerebral Cortex 3: 171–186.

    PubMed  CAS  Google Scholar 

  • Kennedy, H., Bullier, J., and Dehay, C., 1989a, Cytochrome oxidase activity in the striate cortex and lateral geniculate nucleus of the newborn and adult macaque monkey, Exp. Brain Res. 61: 204–209.

    Google Scholar 

  • Kennedy, H., Bullier, J., and Dehay, C., 19896, Transient projection from the superior temporal sulcus to area 17 in the newborn macaque monkey. Proc. Natl. Acad. Sci. USA 86: 8093–8097.

    Google Scholar 

  • Kluver, H., 1942, Functional significance of the geniculo-striate system, Biol., Symp. 7: 253–299.

    Google Scholar 

  • Kostovic, I., and Rakic, P., 1984, Development of prestriate visual projections in the monkey and human fetal cerebraum revealed by transient cholinesterase staining, J. Neurosci. 4: 25–42.

    PubMed  CAS  Google Scholar 

  • LaMantia, A. S., and Rakic, P., 1990, Axon overproduction and elimination in the corpus callosum of the developing rhesus monkey, J. Neurosci. 10: 2156–2175.

    PubMed  CAS  Google Scholar 

  • LaMantia, A. S., and Rakic, P., 1994, Axon overproduction and elimination in the anterior commissure of the developing rhesus monkey, J. Comp. Neurol. 340: 328–336.

    CAS  Google Scholar 

  • Lidow, M. S., and Rakic, P., 1992, Scheduling of monoaminergic neurotransmitter receptor expres- sion in the primate neocortex during postnatal development, Cerebral Cortex 2: 401–416.

    PubMed  CAS  Google Scholar 

  • Lidow, M. S., Goldman-Rakic, P. S., and Rakic, P., 1991, Synchronized overproduction of neurotransmitter receptors in diverse regions of the primate cerebral cortex, Proc:. Natl. Acad. Sci. USA 88: 10218–10221.

    CAS  Google Scholar 

  • Logothetis, N., Pauls, J., and Poggio, “F., 1995, Shape representation in the inferior temporal cortex of monkeys, Curr. Biol. 5: 552–563.

    Google Scholar 

  • Lomber, S. G., McNeil, M. A., and Payne, B. R., 1995, Amplification of thalamic projections to middle suprasylvian cortex following ablation of immature primary visual cortex in the cat, Cerebral Cortex 5: 166–191.

    PubMed  CAS  Google Scholar 

  • Lund, J. S., and Harper, T. R., 1991, Postnatal development of thalamic recipient neurons in the monkey striate cortex. I11. Somatic inhibitory synapse acquisition by spiny stellate neurons of layer IVC, /. Comp. Neurol. 309: 141–149.

    CAS  Google Scholar 

  • Lund, J. S., and Holbach, S. M., 1991, Postnatal development of thalamic recipient neurons in the monkey striate cortex. I. Comparison of spine acquisition and dendritic growth of layer 4G alpha and beta spiny stellate neurons,/ Comp. Neural. 309: 115–128.

    CAS  Google Scholar 

  • Lynch, J. C., 1992, Saccade initiation and latency deficits after combined lesions of the frontal and posterior eye fields in monkeys,/ Neurophysioi. 68: 1913–1916.

    CAS  Google Scholar 

  • Malkova, L., Mishkin, M., and Bachevalier,J., 1995, Long-term effects of selective neonatal temporal lobe lesions on learning and memory in monkeys, Behan. Neurosci. 109: 212–226.

    CAS  Google Scholar 

  • Maunsell, J. H. R., Sclar, G., Nealey, T. A., and DePriest, D. D., 1991, Extraretinal representations in area V4 of the macaque monkey, Visual Neurosci. 7: 561–573.

    CAS  Google Scholar 

  • Merigan, W. H., 1993, Human V4? Curt. Biol. 3: 226–229.

    CAS  Google Scholar 

  • Merigan, W. H., and Maunsell, J. H. R., 1993, How parallel are the primate visual pathways? Annu. Rev. Neurosci. 16: 369–402.

    PubMed  CAS  Google Scholar 

  • Merzenich, M. M., and Sameshima, K., 1993, Cortical plasticity in memory, Cure. O/yin. Neurobiol. 3: 187–196.

    CAS  Google Scholar 

  • Mikami, A., and Fujita, K., 1992, Development of the ability to detect visual motion in infant macaque monkeys, Dev. Psychobiol. 25: 345–354.

    PubMed  CAS  Google Scholar 

  • Mikami, A., and Kubota, K., 1980, 1nferotemporal neuron activities and color discrimination with delay, Brain Res. 182: 65–78.

    Google Scholar 

  • Miller, E. K., Gochin, P. M., and Gross, C. G., 1991, Habituation-like decrease in the responses of neurons in inferior temporal cortex of the macaque, Visual Neurosci. 7: 357–362.

    CAS  Google Scholar 

  • Miller, E. K., Li, L., and Desimone, R., 1993, Activity of neurons in anterior inferior temporal cortex during a short-term memory task, J. Neurosci. 13: 1460–1478.

    PubMed  CAS  Google Scholar 

  • Miyashita, Y., 1988, Neuronal correlate of visual associative long-terni memory ill the primate temporal cortex, Nature 335: 817–820.

    PubMed  CAS  Google Scholar 

  • Mohler, C. W., and Wurtz, R. H., 1977, Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys, J. Neurophysiol. 40: 74–94.

    PubMed  CAS  Google Scholar 

  • Molotchnikoff, S., and Hubert, F., 1990, Susceptibility of neurons in area 18a to blockade of.urea 17 in rats, Brain Res. 510: 223–228.

    PubMed  CAS  Google Scholar 

  • Moore, T., Rodman, H. R., Repp, A. B., and Gross, C. G., 1993, Comparison of residual visual function after damage to striate cortex in infancy and adulthood, Neurosci. Abstr. 19: 1801.

    Google Scholar 

  • Moore, T., Rodman, H. R., Repp, A. B., and Gross, C. G., 1995a. Localization of visual stimuli after striate cortex damage in monkeys: Parallels with human blindsight, Proc. Nall. Acad. Sci. USA 92: 8215–8218.

    CAS  Google Scholar 

  • Moore, T., Repp, A. B., Rodman, H. R., and Gross, C. G., 1995b, Preserved motion discrimination in monkeys with early lesions of striate cortex, Neurosci. Absl. 21: 1651.

    Google Scholar 

  • Moore, ‘F., Rodman, H. R., Repp, A. B., Gross, C. G., and Mezrich, R., 1996, Greater residual vision after striate cortex damage in infancy,/ Neurophysiol. 76: 3928–3933.

    CAS  Google Scholar 

  • Morrison, J. H., and Foote, S. L., 1986, Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in old and new world monkeys,]. Comp. Neurol. 243: 117–138.

    CAS  Google Scholar 

  • Newsome, W. ‘F., Wurtz, R. H., Dursteler, M. R., and Mikami, A., 1985, Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey, J. Neurosci. 5: 825–840.

    CAS  Google Scholar 

  • Olavarria, J., and Torrealba, F., 1978, ‘Fhe effects of acute lesions of striate cortex on the ret isotopic organization of lateral peristriate cortex in the rat, Brain Res. 151: 386–391.

    Google Scholar 

  • O Scalaidhe, S. P., Albright, ‘F. D., Rodman, H. R., and Gross, C. G., 1995, Effects of superior temporal polysensory area lesions on eye movements in the macaque monkey, J. Neurop/mysiol. 73: 1–19.

    CAS  Google Scholar 

  • O Scalaidhe, S. P., Rodman, H. R., Albright, ‘F. D., and Gross, C. G. 1997, The effects of combined superior temporal polysensory area and frontal eye field lesions on eye movements, Be/may. Brain Res. 84: 31–46.

    CAS  Google Scholar 

  • Pasik, P., and Pasik, T., 1982, Visual functions in monkeys after total removal of visual cerebral cortex, Contrib. Sensory Physiol. 7: 147–200.

    Google Scholar 

  • Payne, B. R., 1993, Evidence for visual cortical area homologs in cat and macaque monkey, Cerebral Cortex 3: 1–25.

    PubMed  CAS  Google Scholar 

  • Payne, B. R., and Cornwell, P., 1994, System-wide repercussions of damage to the immature visual cortex, Trends Neurosci. 17: 126–130.

    PubMed  CAS  Google Scholar 

  • Payne, B. R., Pearson, H., and Cornwell, P., 1988, Development of visual and auditory cortical connections in the cat, in: Cerebral Cortex, Volume 7, Development and Maturation of Cerebral Cortex ( A. Peters and E. G. Jones, eds), Plenum Press, New York, pp. 309–389.

    Google Scholar 

  • Payne, B. R., Lomber, S. G., McNeil, M., and Cornwell, P., 1996, Evidence for greater sight in blindsight following damage to primary visual cortex early in life: A review, Neuropsyclmnlogia 34: 741–774.

    CAS  Google Scholar 

  • Raisler, R. 1.., and Harlow, H. F., 1965, Learned behavior following lesions of posterior association cortex in infant, immature and preadolescent monkeys, J. Comp. Plmysiol. Psychol. 60: 167–174.

    CAS  Google Scholar 

  • Rakic, P., 1976, Difference in the time of neuron origin and in eventual distribution of neurons in areas 17 and 18 of the visual cortex in rhesus monkey, Exp. Brain Res. 1: 244–248.

    Google Scholar 

  • Rakic, P., 1988, Specification of cerebral cortical areas, Science 241: 170–176.

    CAS  Google Scholar 

  • Rakic, P., and Goldman-Rakic, P. S., 1982, Development and modifiability of the cerebral cortex, Neurosci. Res. Prog. Bull. 20: 429–611.

    Google Scholar 

  • Rakic, P., Bourgeois, J. P., Eckenhoff, M. E. F., Zecevic, N., and Goldman-Rakic, P. S., 1986, Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex, Science 232: 232–235.

    PubMed  CAS  Google Scholar 

  • Rocha-Miranda, C., Bender, 1)., Gross, C. G., and Mishkin, M., 1975, Visual activation of neurons in inferotemporal cortex depends on striate cortex and the forebrain commissures, J. Neurophysiol. 58: 1292–1306.

    Google Scholar 

  • Rodman, H. R., 1994, Development of inferior temporal cortex in the monkey, Cerebral Cortex 5: 484–498.

    Google Scholar 

  • Rodman, H. R., and Consuclos, M. C., 1994, Cortical projections to anterior inferior temporal cortex in infant macaque monkeys, Visual Neurosci. 11: 119–133.

    CAS  Google Scholar 

  • Rodman, H. R., and Nace, K. I.., 1997, In: ( N. A. Krasnegor, G. R. Lyon, and P. S. Goldman-Rakic, eds.), Development of the Prefrontal Cortex: Evolution, Neurobiology and Behavior Brookes Publishing, Baltimore, MD, pp. 167–190.

    Google Scholar 

  • Rodman, H. R., Gross, C. G., and Albright, T. D., 1989, Afferent basis of visual response properties in area MT of the macaque: I. Effects of striate cortex removal, J. Neurosci 9: 203–2050.

    Google Scholar 

  • Rodman, H. R., Gross, C. G., and Albright, T. D., 1990, Afferent basis of visual response properties in area MT of the macaque: II. Effects of superior colliculus removal,/ Neurosci. 10: 1154–1164.

    CAS  Google Scholar 

  • Rodman, H. R., Skelly, J. P., and Gross, C. G., 1991, Stimulus selectivity and state dependence of activity in inferior temporal cortex of infant monkeys, Proc. Natl. Acad. Sci. USA 88: 7572–7575.

    PubMed  CAS  Google Scholar 

  • Rodman, H. R., O Scalaidhe, S. P., and Gross, C. G., 1993, Visual response properties of neurons in temporal cortical visual areas of infant monkeys, J. Neuropaysiol. 70: 1115–1136.

    CAS  Google Scholar 

  • Rolls, E. ‘l’., Baylis, G. C., Hasselmo, M. E., and Nalwa, V., 1989, The effect of learning on the face selective responses of neurons in the cortex in the superior temporal sulcus of the monkey, Exp. Brain. Res. 76: 153–164.

    CAS  Google Scholar 

  • Sakai, K., and Miyashita, Y., 1991, Neural organization for the long-term memory of paired associates, Nature 354: 152–155.

    PubMed  CAS  Google Scholar 

  • Saper, C. B., 1987, Function of the locus coeruleus, Trends Neurosci. 10: 343–344.

    Google Scholar 

  • Schiller, P. H., and Malpeli, J. G., 1977, The effect of striate cortex cooling on area 18 cells in the monkey, Brain Res. 126: 366–369.

    PubMed  CAS  Google Scholar 

  • Schiller, P. H., Stryker, M., Cynader, M., and Berman, N., 1974, Response characteristic of single cells in the monkey superior colliculus following ablation or cooling of visual cortex, J. Neuropltysiol. 37: 181–194.

    CAS  Google Scholar 

  • Schwartz, M. L., and Goldman-Rakic, P. S., 1990, Development and plasticity of the primate cerebral cortex, Clin. Perinatol. 17: 83–102.

    PubMed  CAS  Google Scholar 

  • Segraves, M. A., Goldberg, M. E., Deng, S., Bruce, C. J., Uugerleider, L. G., and Mishkin, M., 1987, The role of the striate cortex in the guidance of eye movements in the monkey, J. Neurosci. 7: 3040–3058.

    PubMed  CAS  Google Scholar 

  • Sereno, M. l., Rodman, H. R., and Karten, H. J., 1991, Organization of visual cortex in the California ground squirrel, Neurosci. Abstr. 17: 844.

    Google Scholar 

  • Sesma, M. A., and Burkhalter, A., 1994, Development of modular organization in area V2 of monkey and human visual cortex, Neurosci. Abstr. 20: 215.

    Google Scholar 

  • Slater, A., Morison, V., “limn, C., and Rose, D., 1985, Movement perception and identity constancy in the new-born baby, Br. J. Dev. Psychol. 3: 211–220.

    Google Scholar 

  • Sobotka, S., and Ringo,,J. L., 1991, Failure of visual image pairings to produce correlated single-unit responses in inferotemporal cortex of a macaque, Neurosci. Abstr. 17: 660.

    Google Scholar 

  • Spear, P. D., 1983, Neural mechanisms of compensation following neonatal visual cortex damage, in: Synaptic Plasticity and Remodeling ( C. W. Cotman, ed.), Guilford Press, New York, 111–167.

    Google Scholar 

  • Spitzer, H., and Richmond, B. J., 1991, ‘Cask difficulty: Ignoring, attending to, and discriminating a visual stimulus yield progressively more activity in inferior temporal neurons, Exp. Brain Res. 83: 340–348.

    Google Scholar 

  • Stryker, M., 1991, Temporal associations, Nature 354: 108.

    PubMed  CAS  Google Scholar 

  • Tootell, R. B. H., and Taylor, J. B., 1995, Anatomical evidence for MT and additional cortical visual areas in humans, Cerebral Cortex 5: 39–55.

    PubMed  CAS  Google Scholar 

  • Uylings, H. B., 1994, What determines the specification of cortical areas? Trends Neurosci. 17: 1–2.

    PubMed  CAS  Google Scholar 

  • Van Buren, J. M., 1963, Trans-synaptic retrograde degeneration in the visual system of primates, J. Neurol. Neurosurg. Psychiatr, 26: 402–409.

    Google Scholar 

  • Voytko, M. L., Kitt, C. A., and Price, D. L., 1992, Cholinergie immunoreactive fibers in monkey anterior temporal cortex, Cerebral Cortex 2: 48–55.

    PubMed  CAS  Google Scholar 

  • Walsh, C., and Cepko, C. L., 1992, Widespread dispersion of neuronal clones across functional regions of the cerebral cortex, Science 255: 434–440.

    PubMed  CAS  Google Scholar 

  • Webster, M. J., Ungerleider, L. G., and Bachevalier, J., 1991a, Connections of inferior temporal areas TE and TE() with medial temporal-lobe structures in infant and adult monkeys, Neurosci. 11: 1095–1116.

    CAS  Google Scholar 

  • Webster, M. J., Ungerleider, L. G., and Bachevalier, J., 1991b, Lesions of inferior temporal area ‘TE its infant monkeys alter cortico-amygdalar projections, NeuroReport 2: 769–772.

    PubMed  CAS  Google Scholar 

  • Webster, M. J., Bachevalier, J., and Ungerleider, L. G., 1994, Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys, Cerebral Cortex 4: 470–483.

    PubMed  CAS  Google Scholar 

  • Webster, M. J., Bachevalier, J., and Ungerleider, L. G., 1995a, Transient subcortical connections of inferior temporal areas TEO and TEO in infant macaque monkeys, f. Comp. Neurol. 352: 213226.

    Google Scholar 

  • Webster, M. J., Bachevalier, J., and Ungerleider, L. G., 1995b, Development and plasticity of visual memory circuits, in: Maturational Windows and Adult Cortical Plasticity. SFI Studies in the Sciences of Complexity, Volume 14 (B. Julesz and I. Kovacs, eds.), Addison-Wesley, Reading, MA.

    Google Scholar 

  • Weller, R. E., and Kaas, J. H., 1989, Parameters affecting the loss of ganglion cells following ablations of striate cortex in primates, Visual Neurosci. 3: 327–349.

    CAS  Google Scholar 

  • Weiskrantz, L., 1986, Blindsight: A Case Study and Implications, Oxford University Press, Oxford.

    Google Scholar 

  • Weiskrantz, L., Barbur, J. L., and Sahraie, A., 1995, Parameters affecting conscious versus unconscious visual discrimination with damage to V1, Proc. Natl. Acad. Sci. USA 92: 6122–6126.

    PubMed  CAS  Google Scholar 

  • Wilson, F. A. W., O Scalaidhe, S. P., and Goldman-Rakic, P. S. 1993, Dissociation of object and spatial processing domains in primate prefrontal cortex, Science 260: 1955–1958.

    PubMed  CAS  Google Scholar 

  • Yakovlev, P. I., and Lecours, A. R., 1967, The myelogenetic cycles of regional maturation of the brain, in: Regional Maturation of Brain in Early Life ( A. Minkowski, ed.), Davis, Philadelphia, pp. 3–70.

    Google Scholar 

  • Yamasaki, D. S., and Wurtz, R. H., 1987, Recovery of function following chemical lesions of cortical area MT, Neurosci. Abstr. 13: 625.

    Google Scholar 

  • Yamasaki, D. S., and Wurtz, R. H., 1991, Recovery of function after lesions in the superior temporal sulcus in the monkey,/ Neurophysiol. 66: 651–673.

    CAS  Google Scholar 

  • Yamashita, A., 1992, Ontogeny of cholecystokinin-immunoreactive structures in the primate cerebral neocortex, Int. J. Neurosci. 64: 139–151.

    CAS  Google Scholar 

  • Yamashita, A., Hayashi, M., Shimizu, K., and Oshima, K., 1989, Ontogeny of somatostatin in cerebral cortex of macaque monkey: An immunohistochemical study, Dev. Brain Res. 45:103–1 l I.

    Google Scholar 

  • Yamashita, A., Shimizu, K., and Hayashi, M., 1990, Ontogeny of substance P immunoreactive structures in the primate cerebral neocortex, Dev. Brain Res. 57: 197–207.

    CAS  Google Scholar 

  • Zohary, E., Celebrini, S., Britten, K. H., and Newsome, W. T., 1994, Neuronal plasticity that underlies improvement in perceptual performance, Science 263: 1289–1292.

    PubMed  CAS  Google Scholar 

  • Zola-Morgan, S., and Squire, L. R., 1993, Neuroanatomy of memory, Anon. Rev. Neurosci. 16: 547–563.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rodman, H.R., Moore, T. (1997). Development and Plasticity of Extrastriate Visual Cortex in Monkeys. In: Rockland, K.S., Kaas, J.H., Peters, A. (eds) Extrastriate Cortex in Primates. Cerebral Cortex, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9625-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9625-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9627-8

  • Online ISBN: 978-1-4757-9625-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics