Skip to main content

Part of the book series: Cerebral Cortex ((CECO,volume 8A))

Abstract

Reptiles and mammals are the two groups of vertebrates with well-developed cerebral cortices. Ray-finned fishes have forebrains that develop by an eversion of the rostral neural tube that reduces the roof of the telencephalon to a thin membrane (Nieuwenhuys, 1982; Northcutt and Davis, 1983). They have olfactory cortices on the ventrolateral walls of their cerebral hemispheres (e.g., Braford and Northcutt, 1974), but the eversion process seemingly precludes the formation of a cortical roof to the telencephalon. Cartilaginous fishes (such as sharks), fleshy-finned fishes (lungfishes and coelacanths), amphibians, reptiles, birds, and mammals all have forebrains that develop via a fundamentally different process. This involves an evagination of the rostral neural tube resulting in paired lateral ventricles, interventricular foramina, and a neuronal roof to the telencephalon that can form an extensive cerebral cortex. However, the telencephalic roof of sharks forms a solid mass of neurons lacking the lamination usually associated with the cerebral cortex (Smeets et al., 1983). Although amphibians (Northcutt and Kicliter, 1980) and lungfishes (Northcutt, 1986) have laminated cortices, they show little migration of neurons away from the ependyma. Birds have a small cerebral cortex, ostensibly resulting from a secondary reduction of the reptilian pattern (Benowitz, 1980). It is only in reptiles and mammals that the telencephalic roof develops into extensive and multilayered cortices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ariëns Kappers, C. U., 1921, Vergleichende Anatomie des Nervensystems, Bohn, Haarlem.

    Google Scholar 

  • Ariëns Kappers, C. U., Huber, G. C., and Crosby, E. C., 1936, The Comparative Anatomy of the Nervous System of Vertebrates, Including Man, reprinted 1967, Hafner, New York.

    Google Scholar 

  • Armstrong, J. A., Gamble, H. J., Goldby, F., 1953, Observations on the olfactory apparatus and telencephalon of Anolis, a microsmatic lizard, J. Anat. 87:288–307.

    PubMed  CAS  Google Scholar 

  • Balaban, C. D., 1977, Olfactory projections in emydid turtles (Pseudemys scripta elegans and Graptemys pseudogeographica), Am. Zool. 17:887.

    Google Scholar 

  • Balaban, C. D., 1978, Structure of the pallial thickening in turtles (Pseudemys scripta elegans), Anat. Rec. 190:330–331.

    Google Scholar 

  • Balaban, C. D., 1979, Organization of thalamic projections to anterior dorsal ventricular ridge in two species of turtles (Pseudemys scripta elegans and Chrysemys picta belli), Ph.D. dissertation, University of Chicago.

    Google Scholar 

  • Balaban, C. D., and Ulinski, P. S., 1981a, Organization of thalamic afferents to anterior dorsal ventricular ridge in turtles—I. Projections of thalamic nuclei, J. Comp. Neurol. 200:95–130.

    Article  PubMed  CAS  Google Scholar 

  • Balaban, C. D., and Ulinski, P. S., 1981b, Organization of thalamic afferents to anterior dorsal ventricular ridge in turtles—II. Properties of the rotundal-dorsal map, J. Comp. Neurol. 200:131–150.

    Article  PubMed  CAS  Google Scholar 

  • Bass, A. H., and Northcutt, R. G., 1981a, Retinal recipient nuclei in the painted turtle, Chrysemys picta: An autoradiographic and HRP study, J. Comp. Neurol. 199:97–112.

    Article  PubMed  CAS  Google Scholar 

  • Bass, A. H., and Northcutt, R. G., 1981b, Primary retinal targets in the Atlantic loggerhead sea turtle, Caretta caretta, Cell Tissue Res. 218:253–264.

    Article  PubMed  CAS  Google Scholar 

  • Bass, A. H., Pritz, M. B., and Northcutt, R. G., 1973, Effects of telencephalic and tectal ablations on visual behavior in the side-necked turtle, Podocnemis unifils, Brain Res. 55:455–460.

    Article  PubMed  CAS  Google Scholar 

  • Bass, A. H., Andry, M. L., and Northcutt, R. G., 1983, Visual activity in the telencephalon of the painted turtle, Chrysemys picta, Brain Res. 263:201–210.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten, H. G., and Braak, H., 1968, Catecholamine in Gehirn der Eidechse (Lacerta viridis and Lacerta muralis), Z. Zeilforsch. 86:574–608.

    Article  CAS  Google Scholar 

  • Baylor, D. A., and Fettiplace, R., 1976, Transmission of signals from photoreceptors to ganglion cells in the eye of the turtle, Cold Spring Harbor Symp. Quant. Biol. 40:529–536.

    Article  PubMed  CAS  Google Scholar 

  • Bear, M. F., and Ebner, F. F., 1983, Somatostatin-like immunoreactivity in the forebrain of Pseudemys turtles, Neuroscience 2:297–307.

    Article  Google Scholar 

  • Beckers, H. J. A., Platel, R. and Nieuwenhuys, R., 1971/1972, Les aires corticales de quelques reptiles squamates Lacerta viridis, Chamaeleo lateralis, Monopeltis guentheri, Acta Morphol. Neerl. Scand. 9:337–364.

    Google Scholar 

  • Belekhova, M. G., 1979, Neurophysiology of the forebrain, in: Biology of the Reptilia, Volume 10 (C. G. Gans, R. G. Northcutt, and P. S. Ulinski, eds.), Academic Press, New York, pp. 287–359.

    Google Scholar 

  • Belekhova, M. V., Kosareva, A. A., Vaselkin, N. P., and Ermakova, T. V., 1979, Telencephalic afferent connections in the turtle Emys orbicularis: A peroxidase study, J. Evol. Biochem. Physiol. 15:97–103.

    Google Scholar 

  • Bennett, A. F., and Dawson, W. R., 1976, Metabolism, in: Biology of the Reptilia, Volume 5 (C. Gans and W. R. Dawson, eds.), Academic Press, New York, pp. 127–223.

    Google Scholar 

  • Benowitz, L., 1980, Functional organization of the avian telencephalon, in: Comparative Neurology of the Telencephalon (S. O. E. Ebbesson, ed.), Plenum Press, New York, pp. 389–421.

    Chapter  Google Scholar 

  • Berbel, P. J., Martinez-Guijarro, F. J., and Lopez-Garcia, C., 1987, Intrinsic organization of the medial cerebral cortex of the lizard Lacerta pituysensis: A Golgi study, J. Morphol. 194:275–286.

    Article  Google Scholar 

  • Berquist, H., and Kallen, B., 1954, Notes on the early histogenesis and morphogenesis of the central nervous system in vertebrates, J. Comp. Neurol. 100:627–659.

    Article  Google Scholar 

  • Berson, D. M., and Hartline, P. H., 1988, A tecto-rotundal-telencephalic pathway in the rattlesnake: Evidence for a forebrain representation of the infrared sense, J. Neurosci. 8:1074–1088.

    PubMed  CAS  Google Scholar 

  • Blanton, M., and Kriegstein, A., 1987, Development of cortical inhibition: An in vitro HRP and GABA-immunocytochemical study in turtle, Neurosci. Abstr. 13:953.

    Google Scholar 

  • Blanton, M. G., Shen, J. M., and Kriegstein, A. R., 1986, Actions of acetylcholine in turtle dorsal cortex, Neurosci. Abstr. 12:573.

    Google Scholar 

  • Blanton, M. G., Shen, J. M., and Kriegstein, A. R., 1987, Evidence for the inhibitory neurotransmitter 7-aminobutyric acid in aspiny and sparsely spiny nonpyramidal neurons of the turtle dorsal cortex, J. Comp. Neurol. 259:277–297.

    Article  PubMed  CAS  Google Scholar 

  • Boiko, V. P., 1980, Responses to visual stimuli in thalamic neurons of the turtle Emys orbicularis, Neurosci. Behav. Physiol. 10:183–188.

    Article  PubMed  CAS  Google Scholar 

  • Braak, H., Baumgarten, H. G., and Falck, B., 1968, 5-Hydroxytryptamine in Gerhirn der Eidechse (Lacerta viridis and Lacerta muralis), Z. Zeilforsch. 90:161–185.

    Article  CAS  Google Scholar 

  • Braford, M. R., Jr., and Northcutt, R. G., 1974, Olfactory bulb projections in the bichir, Polypterus, J. Comp. Neurol. 156:165–178.

    Article  PubMed  Google Scholar 

  • Brauth, S. E., 1984, Enkephalin-like immunoreactivity within the telencephalon of the reptile Caiman crocodilus, Neuroscience 11:345–358.

    Article  PubMed  CAS  Google Scholar 

  • Brauth, S. E., 1988, Catecholamine neurons in the brainstem of the reptile Caiman crocodilus, J. Comp. Neurol 270:313–326.

    Article  PubMed  CAS  Google Scholar 

  • Brauth, S. E., Reiner, A., Kitt, C. A., and Karten, H. J., 1983, The substance P-containing striatotegmental path in reptiles: An immunohistochemical study, J. Comp. Neurol. 219:305–327.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, L. L., and Butler, A. B., 1984a, Telencephalic connections in lizards. I. Projections to cortex, J. Comp. Neurol 229:585–601.

    Article  PubMed  CAS  Google Scholar 

  • Bruce, L. L., and Butler, A. B., 1984b, Telencephalic connections in lizards. II. Projections to anterior dorsal ventricular ridge, J. Comp. Neurol. 229:602–616.

    Article  PubMed  CAS  Google Scholar 

  • Butler, A. B., 1976, Telencephalon of the lizard Gekko gekko (Linnaeus): Some connections of the cortex and dorsal ventricular ridge, Brain Behav. Evol. 13:396–417.

    Article  PubMed  CAS  Google Scholar 

  • Butler, A. B., 1978, Forebrain connections in lizards and the evolution of sensory systems, in: Behavior and Neurology of Lizards (N. Greenberg and P. D. Maclean, eds.), NIMH, Washington, D.C., pp. 65–78.

    Google Scholar 

  • Butler, A. B., 1980, Cytoarchitectonic and connectional organization of the lacertilian telencephalon with comments on vertebrate forebrain evolution, in: Comparative Neurology of the Telencephalon (S. O. E. Ebbesson, ed.), Plenum Press, New York, pp. 297–329.

    Chapter  Google Scholar 

  • Butler, A. B., and Northcutt, R. G., 1973, Architectonic studies of the diencephalon of Iguana iguana (Linnaeus), J. Comp. Neurol 149:439–462.

    Article  PubMed  CAS  Google Scholar 

  • Cairney, J., 1926, A general survey of the forebrain of Sphenodon punctatum, J. Comp. Neurol. 42:255–348.

    Article  Google Scholar 

  • Carey, J. H., 1967, The nuclear pattern of the telencephalon of the black snake, Coluber constrictor constrictor, in: Evolution of the Forebrain (R. Hassler and H. Stephen, eds.), Plenum Press, New York, pp. 73–80.

    Google Scholar 

  • Carroll, R. L., 1969, Origin of reptiles, in: Biology of the Reptilia, Volume 1 (C. Gans, A. Bellairs, and T. S. Parsons, eds.), Academic Press, New York, pp. 1–44.

    Google Scholar 

  • Carroll, R. L., 1987, Vertebrate Paleontology and Evolution, Freeman, San Francisco.

    Google Scholar 

  • Clark, J. M., and Ulinski, P. S., 1984, A Golgi study of anterior dorsal ventricular ridge in the alligator, Alligator mississippiensis, J. Morphol. 179:153–174.

    Article  Google Scholar 

  • Connors, B. W., and Kriegstein, A. R., 1986, Cellular physiology of the turtle visual cortex: Distinctive properties of pyramidal and stellate neurons, J. Neurosci. 6:164–177.

    PubMed  CAS  Google Scholar 

  • Connors, B. W., and Ransom, B. R., 1982, Electrophysiological studies on ependymal cells of turtle cortex, Neurosci. Abstr. 8:237.

    Google Scholar 

  • Conty, P., 1953, Richerche sulla gliorchitetonica dei reitili (cheloni, sauri e ofidi), Arch. Ital. Anal. Embriol. 58:295–320.

    Google Scholar 

  • Cosans, C., and Ulinski, P. S., 1990, Spatial organization of axons in turtle visual cortex: Intralamellar and interlamellar projections, J. Comp. Neurol. 295:548–558.

    Article  Google Scholar 

  • Cranny, J., and Powers, A. S., 1983, The effects of core nucleus and cortical lesions in turtles on reversal and dimensional shifting, Physiol. Psychol. 11:103–111.

    Google Scholar 

  • Crawford, A. C., and Fettiplace, R., 1980, The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle, J. Physiol. (London) 306:79–125.

    CAS  Google Scholar 

  • Crawford, A. C., and Fettiplace, R., 1981a, An electrical tuning mechanism in turtle cochlear hair cells, J. Physiol. (London) 312:377–412.

    CAS  Google Scholar 

  • Crawford, A. C., and Fettiplace, R., 1981b, Non-linearities in the responses of turtle hair cells, J. Physiol. (London) 315:317–338.

    CAS  Google Scholar 

  • Crosby, E. C., 1917, The forebrain of Alligator mississippiensis, J. Comp. Neurol. 27:325–403.

    Article  Google Scholar 

  • Crosby, E. C., and Showers, M. J., 1969, Comparative anatomy of the preoptic and hypothalamic areas, in: The Hypothalamus (W. Haymaker, E. Anderson, and W. J. H. Nauta, eds.), Thomas, Springfield, Ill., pp. 61–135.

    Google Scholar 

  • Cruce, J. A. F., 1974, A cytoarchitectonic study of the diencephalon of the tegu lizard, Tupinambis nigropunctatus, J. Comp. Neurol. 153:215–238.

    Article  PubMed  CAS  Google Scholar 

  • Cruce, W. L. R., and Nieuwenhuys, R., 1974, The cell masses in the brain stem of the turtle Testudo hermanni: A topographical and topological analysis, J. Comp. Neurol. 156:277–306.

    Article  PubMed  CAS  Google Scholar 

  • Curwen, A. O., 1937, The telencephalon of Tupinambis nigropunctatus. I. Medial and cortical areas, J. Comp. Neurol. 66:375–404.

    Article  Google Scholar 

  • Dacey, D. M., and Ulinski, P. S., 1983, Nucleus rotundus in snake, Thamnophis sirtalis: An analysis of a nonretinotopic projection, J. Comp. Neurol. 216:175–191.

    Article  PubMed  CAS  Google Scholar 

  • Dacey, D. M., and Ulinski, P. S., 1986a, Optic tectum in the eastern garter snake, Thamnophis sirtalis: I. Morphology of efferent cells, J. Comp. Neurol. 245:1–28.

    Article  PubMed  CAS  Google Scholar 

  • Dacey, D. M., and Ulinski, P. S., 1986b, Optic tectum of the eastern garter snake, Thamnophis sirtalis: V. Morphology of brainstem afferents and general discussion, J. Comp Neurol. 245:423–453.

    Article  PubMed  CAS  Google Scholar 

  • Davila, J. C., Guirado, S., De la Calle, A., and Marin-Giron, F., 1985, Electron microscopy of the medial cortex in the lizard Psammodromus algirus, J. Morphol. 185:327–338.

    Article  Google Scholar 

  • Davila, J. C., Guirado, S., De la Calle, A., and Marin-Giron, F., 1986, Ultrastructure of the dorsal cortex of the lizard Psammodromus algirus, J. Hirnforsch. 27:295–304.

    PubMed  CAS  Google Scholar 

  • Davydova, T. V., and Goncharova, N. V., 1979, Comparative characterization of the basic forebrain cortical zones in Emys orbicularis (Linnaeus) and Testudo horsfieldi (Gray), J. Hirnforsch. 20:245–262.

    PubMed  CAS  Google Scholar 

  • Davydova, T. V., and Smirnov, G. D., 1969, Neuronal organization of the cortical plate in the tortoise cerebral hemispheres, H. Hirnforsch. 11:333–346.

    CAS  Google Scholar 

  • de Lange, S. J., 1911, Das Vorderhirn der Reptilien, Folia Neurobiol. 5:548–597.

    Google Scholar 

  • Desan, P. H., 1984, The organization of the cerebral cortex of the pond turtle, Pseudemys scripta elegans, Ph.D. dissertation, Harvard University.

    Google Scholar 

  • Distel, H., and Ebbesson, S. O. E., 1981, Habenular projections in the monitor lizard (Varanus benegalensus), Exp. Brain Res. 43:324–329.

    PubMed  CAS  Google Scholar 

  • du Lac, S., and Dacey, D. M., 1981, Relation of the retina and optic tectum to the lateral geniculate complex in garter snake (Thamnophis sirtalis), Neurosci. Abstr. 7:460.

    Google Scholar 

  • Dunser, K. R., Maxwell, J. H., and Granda, A. M., 1981, Visual properties of cells in anterior dorsal ventricular ridge of turtle, Neurosci, Lett. 25:281–284.

    Article  CAS  Google Scholar 

  • Durward, A., 1930, The cell masses in the forebrain of Sphenodon punctatum, J. Anat. 65:8–44.

    PubMed  CAS  Google Scholar 

  • Ebbesson, S. O. E., 1980, The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development and neuronal plasticity, Cell Tissue Res. 213:179–212.

    PubMed  CAS  Google Scholar 

  • Ebbesson, S. O. E., and Voneida, T. J., 1969, The cytoarchitecture of the pallium in the tegu lizard, Brain Behav. Evol. 2:431–466.

    Article  Google Scholar 

  • Ebner, F. F., and Colonnier, M., 1975, Synaptic patterns in the visual cortex of turtles: An electron microscopic study, J. Comp. Neurol. 160:51–80.

    Article  PubMed  CAS  Google Scholar 

  • Ebner, F. F., and Colonnier, M., 1978, A quantitative study of synaptic patterns in turtle visual cortex, J. Comp. Neurol 179:263–276.

    Article  PubMed  CAS  Google Scholar 

  • Elprana, D., Wouterlood, F. G., and Alones, V. E., 1980, A corticotectal projection in the lizard Agama agama, Neurosci. Lett. 18:251–256.

    Article  PubMed  CAS  Google Scholar 

  • Flannigan, W. F., Jr., 1974a, Sleep and wakefulness in iguanid lizards, Ctenosaura pectinata and Iguana iguana, Brain Behav. Evol. 8:401–436.

    Article  Google Scholar 

  • Flannigan, W. F., Jr., 1974b, Sleep and wakefulness in chelonian reptiles. II. The redfooted tortoise, Geochelone carbonaria, Arch. Ital. Biol. 112:253–277.

    Google Scholar 

  • Flannigan, W. F., Jr., Wilcox, R. H., and Rechtschaffen, A., 1973, The EEG and behavioral continuum of the crocodilian, Caiman sclerops, Electroencephalogr. Clin. Neurophysiol. 34:521–538.

    Article  Google Scholar 

  • Flannigan, W. F., Jr., Knight, C. P., Hartse, K. M., and Rechtschaffen, A., 1974, Sleep and wakefulness in chelonian reptiles. I. The box turtle, Terrapene Carolina, Arch. Ital. Biol. 112:227–252.

    Google Scholar 

  • Franzoni, M. F., and Fasolo, A., 1982, The hypothalamus of Lacerta sicula. A Golgi study on the caudal hypothalamus, Cell Tissue Res. 223:61–71.

    Article  PubMed  CAS  Google Scholar 

  • Gaidenko, G. V., 1978, Efferent connections of the dorsal cortex in tortoises, J. Evol. Biochem. Physiol. 13:268–270.

    Google Scholar 

  • Gamble, H. J., 1956, An experimental study of the secondary olfactory connexions in Testudo graeca, J. Anat. 90:15–29.

    PubMed  CAS  Google Scholar 

  • Gans, C., 1978, The characteristics and affinities of the Amphisbaenia, Trans. Zool. Soc. London 34:347–416.

    Article  Google Scholar 

  • Garcia-Verdugo, J. M., Berbel, P. J., and Lopez-Garcia, C., 1981, Estudio con Golgi con microscopia electronica de los ependimocitos de la corteza cerebral del lagarto Lacerta galloti, Trab. Inst. Cajal 72:269–278.

    PubMed  CAS  Google Scholar 

  • Garcia-Verdugo, J. M., Farinas, I., Molowny, A., and Lopez-Garcia, C., 1986, Ultrastructure of putative migrating cells in the cerebral cortex of Lacerta galloti, J. Morphol. 189:189–198.

    Article  PubMed  CAS  Google Scholar 

  • Goffinet, A. M., 1983, The embryonic development of the cortical plate in reptiles: A comparative study in Emys orbicularis and Lacerta agilis, J. Comp. Neurol. 215:437–452.

    Article  PubMed  CAS  Google Scholar 

  • Goffinet, A. M., Daumerie, C., Langerwerf, B., and Pieau, C., 1986, Neurogenesis in reptilian cortical structures: 3H-thymidine autoradiographic analysis, J. Comp. Neurol. 243:106–116.

    Article  PubMed  CAS  Google Scholar 

  • Goldby, F., 1934, The cerebral hemispheres of Lacerta viridis, J. Anat. 68:157–215.

    PubMed  CAS  Google Scholar 

  • Goldby, F., and Gamble, H. J., 1957, The reptilian cerebral hemispheres, Biol. Rev. 32:383–420.

    Article  Google Scholar 

  • Goossens, N., Dierickx, K., and Vandesande, F., 1980, Immunocytochemical localization of somatostatin in the brain of the lizard, Ctenosauria pectinata, Cell Tissue Res. 208:499–505.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, N., 1982, A forebrain atlas and stereotaxic technique for the lizard, Anolis carolinensis, J. Morphol. 174:217–236.

    Article  Google Scholar 

  • Guirado, S., De La Calle, A., Davila, J. C., and Marin-Giron, F., 1984, Light microscopy of the medial wall of the cerebral cortex of the lizard Psammodromus algirus, J. Morphol. 181:319–331.

    Article  Google Scholar 

  • Guirado, S., Davila, J. C., De La Calle, A., and Marin-Giron, F., 1987, A Golgi study of the dorsal cortex in the lizard Psammodromus algirus, J. Morphol. 194:265–274.

    Article  Google Scholar 

  • Gusel’nikov, V. I., and Pivavarov, A. S., 1978, Postsynaptic mechanism of habituation of turtle cortical neurons to moving stimuli, Neurosci. Behav. Physiol. 9:1–7.

    Article  CAS  Google Scholar 

  • Haberly, L. B., and Price, J. L., 1978, Association and commissural fiber systems of the olfactory cortex of the rat. II. Systems originating in the olfactory peduncle, J. Comp. Neurol. 181:781–808.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J. A., Foster, R. E., Ebner, F. F., and Hall, W. C., 1977, Visual cortex in a reptile, the turtle (Pseudemys scripta and Chrysemys picta), Brain Res. 130:197–216.

    Article  PubMed  CAS  Google Scholar 

  • Hall, W. C., and Ebner, F. F., 1970a, Parallels in the visual afferent projections of the thalamus in the hedgehog (Paraechinas hypomelas) and the turtle (Pseudemys scripta), Brain Behav. Evol. 3:135–154.

    Article  PubMed  CAS  Google Scholar 

  • Hall, W. C., and Ebner, F. F., 1970b, Thalamotelencephalic projections in the turtle (Pseudemys scripta), J. Comp. Neurol. 140:101–122.

    Article  PubMed  CAS  Google Scholar 

  • Halpern, M., 1974, An experimental demonstration of the fornix system in a snake, Soc. Neurosci 4th Annu. Meet.

    Google Scholar 

  • Halpern, M., 1976, The efferent connections of the olfactory bulb and accessory olfactory bulb in the snakes, Thamnophis sirtalis and Thamnophis radix, J. Morphol. 150:553–578.

    PubMed  CAS  Google Scholar 

  • Halpern, M., 1980, The telencephalon of snakes, in: Comparative Neurology of the Telencephalon (S. O. E. Ebbesson, ed.), Plenum Press, New York, pp. 257–295.

    Chapter  Google Scholar 

  • Halpern, M., and Frumin, N., 1973, Retinal projections in a snake (Thamnophis sirtalis), J. Morphol. 141:359–382.

    Article  PubMed  CAS  Google Scholar 

  • Hartse, K. M., and Rechtschaffen, A., 1974, Effect of atropine sulfate on the sleep-related EEG spike activity of the tortoise, Geochelone carbonaria, Brain Behau. Evol. 9:81–94.

    Article  CAS  Google Scholar 

  • Hayes, W. N., and Hertzler, D. R., 1967, Role of the optic tectum and general cortex in reptilian vision, Psychon. Sci. 9:521.

    Google Scholar 

  • Heimer, L., 1969, Secondary olfactory connections, Ann. N.Y. Acad. Sci. 167:129–146.

    Article  Google Scholar 

  • Heller, S. B., and Ulinski, P. S., 1987, Morphology of geniculocortical axons in turtles of the genera Pseudemys and Chrysemys, Anat. Embryol. 175:505–515.

    Article  PubMed  CAS  Google Scholar 

  • Harmen, H. M., Jouvet, M., and Klein, M., 1964, Etude polygraphique du sommeil chez la tortue, C.R. Soc. Biol. 258:2175–2178.

    Google Scholar 

  • Herrick, C. L., 1892, Embryological notes on the brain of the snake, J. Comp. Neurol. 2:160–176.

    Article  Google Scholar 

  • Hertzler, D. R., and Hayes, W. N., 1967, Cortical and tectal function in visually guided behavior of turtles, J. Comp. Physiol. Psychol. 63:444–447.

    Article  PubMed  CAS  Google Scholar 

  • Hetzel, W. von, 1974, Die Ontogenese des Telencephalon bie Lacerta sicula (Rafinesque), mit Besonderer Berücksichtigung der Pallialler Entwicklung, Zool. Beitr. N.S. 20:361–458.

    Google Scholar 

  • Hines, M., 1923, The development of the telencephalon in Sphenodon punctatum, J. Comp. Neurol. 35:483–537.

    Article  Google Scholar 

  • Hohmann, C. F., Carroll, P. T., and Ebner, F. F., 1983, Acetylcholine levels and choline acetyltransferase activity in turtle cortex, Brain Res. 258:120–122.

    Article  Google Scholar 

  • Hoogland, P. V., ten Donkelaar, H. J., and Cruce, J. A. F., 1978, Efferent connections of the septal area in a lizard (Tupinambis migropunctatus), Neurosci. Lett. 7:61–65.

    Article  PubMed  CAS  Google Scholar 

  • Hotton, N., Maclean, P. D., Roth, J. J., and Roth, E. C., 1986, The Ecology and Biology of Mammal-Like Reptiles, Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Inoue, Y., Inoue, T., Nishimura, Y., and Shimai, K., 1974, The glial cells in the reptilian brain and spinal cord—Golgi study, Okajimas Folia Anat. Jpn. 51:161–188.

    PubMed  CAS  Google Scholar 

  • Johnston, J. B., 1915, The cell masses in the forebrain of the turtle Cistudo Carolina, J. Comp. Neurol. 25:393–468.

    Article  Google Scholar 

  • Johnston, J. B., 1916, The development of the dorsal ventricular ridge in turtles, J. Comp. Neurol. 26:481–505.

    Article  Google Scholar 

  • Jones, E. G., and Powell, T. P. S., 1970, An anatomical study of connecting sensory pathways within the cerebral cortex of the monkey brain, Brain 93:793–820.

    Article  PubMed  CAS  Google Scholar 

  • Kallen, B., 1951, On the ontogeny of the reptilian forebrain. Nuclear structures and ventricular sulci, J. Comp. Neurol. 95:307–347.

    Article  PubMed  CAS  Google Scholar 

  • Kallen, B., 1956, Notes on the mode of formation of brain nuclei during ontogenesis, C.R. Assoc. Anat. Reun. 42P:747–756.

    Google Scholar 

  • Karmanova, I. G., and Churnosov, E. V., 1972, Electrophysiological Investigation of natural sleep and wakefulness of turtles and chickens, Zh. Evol. Biochem. Fiziol. 8:59–65.

    CAS  Google Scholar 

  • Khatchaturian, H., Dores, R. M., Watson, S. J., and Akil, H., 1984, β-Endorphin/ACTH immunocytochemistry in the CNS of a lizard, Anolis carolinensis: Evidence for a major mesencephalic cell group, J. Comp. Neurol. 229:576–584.

    Article  Google Scholar 

  • Killackey, H., Pellmar, T., and Ebner, F., 1972, The effects of general cortex ablation on habituation in the turtle, Fed. Proc. 31:819.

    Google Scholar 

  • King, J. S., 1966, A comparative investigation of neuroglia in representative vertebrates: A silver carbonate study, J. Morphol. 119:435–466.

    Article  PubMed  CAS  Google Scholar 

  • Kirsche, W., 1972, Die Entwicklung des Telencephalons der Reptilien und deren Verziehung zur Hirn-Bauplanlehre, Nova Acta Leopold. 37:1–78.

    Google Scholar 

  • Knapp, H., and Kang, D. S., 1968a, The visual pathways of the snapping turtle (Chelydra serpentina), Brain Behav. Evol. 1:19–42.

    Article  Google Scholar 

  • Knapp, H., and Kang, D. S., 1968b, The retinal projections of the sidenecked turtle (Podocnemis unifilis) with some notes on the possible origin of the pars dorsalis of the lateral geniculate body, Brain Behav. Evol. 1:369–404.

    Article  Google Scholar 

  • Kriegstein, A. R., 1985, An intact vertebrate visual system in vitro: Visually evoked pyramidal cell responses in turtle cortex, Neurosci. Lett. 22:S305.

    Google Scholar 

  • Kriegstein, A. R., 1987, Synaptic responses of cortical pyramidal neurons to light stimulation in the isolated turtle visual system, J. Neurosci. 7:2488–2492.

    PubMed  CAS  Google Scholar 

  • Kriegstein, A. R., and Connors, B. W., 1986, Cellular physiology of the turtle visual cortex: Synaptic properties and intrinsic circuitry, J. Neurosci. 7:178–191.

    Google Scholar 

  • Kriegstein, A. R., and Shen, J. M., 1987, Development of cortical inhibition: Appearance of synchronized neuronal discharges, Neurosci. Abstr. 13:954.

    Google Scholar 

  • Kriegstein, A. R., Shen, J. M., and Eshhar, N., 1986, Monoclonal antibodies to the turtle cortex reveal neuronal subsets, antigenic cross-reactivity with the mammalian neocortex, and forebrain structures sharing a pallial derivation, J. Comp. Neurol. 254:330–340.

    Article  PubMed  CAS  Google Scholar 

  • Kriegstein, A. R., Shen, J. M., and Blanton, M. G., 1988, Development of inhibitory function during corticogenesis in turtle, in: Recent Advances in Understanding the Structure and Function of the Forebrain in Reptiles (W. K. Schwerdtfeger and W. J. A. J. Smeets, eds.), Karger, Basel, pp. 131–141.

    Google Scholar 

  • Kruger, L., and Berkowitz, E. C., 1960, The main afferent connections of the reptilian telencephalon as determined by degeneration and electrophysiological methods, J. Comp. Neurol. 115:125–142.

    Article  PubMed  CAS  Google Scholar 

  • Kruger, L., and Maxwell, D. S., 1967, Comparative fine structure of vertebrate neuroglia: Teleosts and reptiles, J. Comp. Neurol. 129:115–141.

    Article  Google Scholar 

  • Kunzle, H., 1985, The cerebellar and vestibular nuclear complexes in the turtle. II. Projections to the prosencephalon, J. Comp. Neurol. 242:122–133.

    Article  PubMed  CAS  Google Scholar 

  • Kunzle, H., and Schnyder, H., 1984, Do retinal and spinal projections overlap within the turtle thalamus? Neuroscience 10:161–168.

    Article  Google Scholar 

  • Lacey, D. J., 1978, The organization of the hippocampus of the fence lizard: A light microscopic study, J. Comp. Neurol. 182:247–265.

    Article  PubMed  CAS  Google Scholar 

  • Langston, W., Jr., 1973, The crocodilian skull in historical perspective, in: Biology of the Reptilia, Volume 4 (C. Gans and T. S. Parsons, eds.), Academic Press, New York, pp. 263–284.

    Google Scholar 

  • Larson-Prior, L. J., and Slater, N. T., 1988, GABAergic inhibition and epileptiform discharges in the turtle hippocampus in vitro, Brain Res. 460:369–375.

    Article  PubMed  CAS  Google Scholar 

  • Larson-Prior, L., Ulinski, P. S., and Slater, N. T., 1989, Excitatory amino acid receptor mediated transmission in geniculocortical and intracortical pathways in visual cortex, Soc. Neurosci. Abstr. 15: 947.

    Google Scholar 

  • Lashley, K. S., 1929, Brain Mechanisms and Intelligence, Dover, New York.

    Google Scholar 

  • Lissberger, S. G., Morris, E. J., and Tychsen, L., 1987, Visual motion processing and sensory motor integration for smooth pursuit eye movements, Annu. Rev. Neurosci. 10:97–130.

    Article  Google Scholar 

  • Lohman, A. H. M., and Mentink, G. M., 1972, Some cortical connections of the tegu lizard Tupinambis tequixin, Brain Res. 45:325–344.

    Article  PubMed  CAS  Google Scholar 

  • Lohman, A. H. M., and van Woerden-Verkely, E., 1976, Further studies on the cortical connections of the tegu lizard, Brain Res. 103:9–28.

    Article  PubMed  CAS  Google Scholar 

  • Lohman, A. H. M., and van Woerden-Verkely, E., 1978, Ascending connections to the forebrain in the tegu lizard, J. Comp. Neurol. 182:555–594.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Garcia, C., Molowny, A., and Perez-Clausell, J., 1983a, Volumetric and densitometric study in the cerebral cortex and septum of a lizard (Lacerta galloti) using the Timm method, Neurosci. Lett. 40:13–18.

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Garcia, C., Tineo, P. L., and Del Corral, J., 1984, Increase of the neuron number in some cerebral cortex areas of a lizard, Podarcis hispanica (Steind. 1870), during postnatal periods of life, J. Hirn forsch. 25:255–260.

    CAS  Google Scholar 

  • Lopez-Garcia, C., Martinez-Guijarro, F. J., Berbel, P., and Garcia-Verdugo, J. M., 1988, Long-spined polymorphic neurons of the medial cortex of lizards: A Golgi, Timm and electron-microscopic study, J. Comp. Neurol. 272:409–423.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Garcia, F., Amiguet, M., Olucha, F., and Lopez-Garcia, C., 1986, Connections of the lateral cortex in the lizard Podarcis hispanica, Neurosci. Lett. 63:39–44.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Guijarro, F. J., Berbel, P. J., Molowny, A., and Lopez-Garcia, C., 1984, Apical dendritic spines and axonic terminals in the bipyramidal neurons of the dorsomedial cortex of lizards (Lacerta), Anat. Embryol. 170:321–326.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Perez, V., Garcia-Verdugo, J. M., and Llahi Sastre, S., 1981, Organization del septum die reptiles (Podarcis pityusensis; Lacertidae). Un estudio volumetrico y con Los metodos Die Golgi, Trab. Inst. Cajal 72:215–225.

    PubMed  CAS  Google Scholar 

  • Mazurskaya, P. Z., 1973, Organization of neuronal receptive fields of the tortoise Emys orbicularis forebrain cortex, J. Evol. Biochem. Physiol. 8:550–555.

    Google Scholar 

  • Mazurskaya, P. Z., Davydova, T. V., and Smirnov, G. D., 1976, Functional organization of exteroceptive projections in the forebrain of the turtle, Neurosci. Trans. 1:109–117.

    Article  Google Scholar 

  • Minelli, G., 1966, Architettura delle corteccie di alcuni rettili (Lacerta muralis, Lacerta viridis, Testudo graecia, Crocodylus actuts), Arch. Zool. Ital. 51:543–573.

    Google Scholar 

  • Moore, G. P., and Tschirigi, R. D., 1962, Non-specific responses of reptilian cortex to sensory stimuli, Exp. Neurol. 5:196–209.

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., and Shepherd, G. M., 1979, Synaptic excitation and long-lasting inhibition of mitral cells in the in vitro turtle olfactory bulb, Brain Res. 172:155–159.

    Article  PubMed  CAS  Google Scholar 

  • Mori, K., Nowycky, M. C., and Shepherd, G. M., 1981, Electrophysiological analysis of mitral cells in the isolated turtle olfactory bulb, J. Physiol. (London) 314:281–294.

    CAS  Google Scholar 

  • Morlock, H. C., 1972, Behavior following ablation of the dorsal cortex of turtles, Brain Behav. Evol. 5:256–263.

    Article  PubMed  CAS  Google Scholar 

  • Mufson, E. J., Desan, P. H., Mesulam, M. M., Wainer, B. H., and Levy, A. I., 1984, Choline acetyltransferase-like immunoreactivity in the forebrain of the red-eared pond turtle (Pseudemys scripta elegans), Brain Res. 323:103–108.

    Article  PubMed  CAS  Google Scholar 

  • Mulligan, K., and Ulinski, P. S., 1990, Organization of the geniculocortical projection in turtles: Isoatimuth lamellae in the visual cortex, J. Comp. Neurol. 296:531–547.

    Article  PubMed  CAS  Google Scholar 

  • Naik, D. R., Sar, M., and Stumpf, W. E., 1981, Immunohistochemical localization of enkephalin in the central nervous system and pituitary of the lizard, Anolis carolinensis, J. Comp. Neurol. 198:583–601.

    Article  PubMed  CAS  Google Scholar 

  • Newman, D. B., and Cruce, W. L. R., 1982, The reptilian brainstem reticular formation: A comparative study using Nissl and Golgi techniques, J. Morphol. 173:325–349.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuys, R., 1982, An overview of the organization of the brain of actinopterygian fishes, Am. Zool. 22:287–310.

    Google Scholar 

  • Northcutt, R. G., 1967, Architectonic studies of the telencephalon of Iguana iguana, J. Comp. Neurol. 130:109–148.

    Article  PubMed  CAS  Google Scholar 

  • Northcutt, R. G., 1970, The telencephalon of the western painted turtle, Chrysemys picta belli, Ill. Biol. Monogr. No. 43.

    Google Scholar 

  • Northcutt, R. G., 1978, Forebrain and midbrain organization in lizards and its evolutionary significance, in: The Behavior and Neurology of Lizards (N. Greenberg and P. D. MacLean, eds.), NIMH, Rockville, Md., pp. 11–64.

    Google Scholar 

  • Northcutt, R. G., 1981, Evolution of the telencephalon in nonmammals, Annu. Rev. Neurosci. 4:301–350.

    Article  PubMed  CAS  Google Scholar 

  • Northcutt, R. G., 1986, Lungfish neural characters and their bearings on sarcopterygian phylogeny, J. Morphol. Suppl. 1:277–298.

    Article  Google Scholar 

  • Northcutt, R. G., and Butler, A. B., 1974, Retinal projections in the northern water snake, Natrix sipedon sipedon, J. Morphol. 142:117–136.

    Article  PubMed  CAS  Google Scholar 

  • Northcutt, R. G., and Davis, R. E., 1983, Telencephalic organization in ray-finned fishes, in: Fish Neurobiology, Volume 2, (R. E. Davis and R. G. Northcutt, eds), University of Michigan Press, Ann Arbor, pp. 203–236.

    Google Scholar 

  • Northcutt, R. G., and Kicliter, E., 1980, Organization of the amphibian telencephalon, in: Comparative Neurology of the Telencephalon (S. O. E. Ebbesson and H. Vanegas, eds.), Plenum Press, New York, pp. 203–256.

    Chapter  Google Scholar 

  • Olucha, F., Poch, L., Martinez-Garcia, F., Schwerdtfeger, W. K., and Lopez-Garcia, C., 1988, Projections from the medial cortex in the brain of lizards. 1. Correlation of anterograde and retrograde transport of horseradish peroxidase with Timm staining, J. Comp. Neurol. 276:469–480.

    Article  PubMed  CAS  Google Scholar 

  • Orrego, F., 1961, The reptilian forebrain. I. The olfactory pathways and cortical areas in the turtle, Arch. Ital. Biol. 99:425–445.

    Google Scholar 

  • Orrego, F., 1962, The reptilian forebrain. III. Cross connections between the olfactory bulbs and the cortical areas in the turtle, Arch. Ital. Biol. 100:1–16.

    Google Scholar 

  • Orrego, F., and Lissenby, D., 1962, The reptilian forebrain. IV. Electrical activity in the turtle cortex, Arch. Ital Biol. 100:17–30.

    Google Scholar 

  • Ouimet, C. C., Patrick, R. L., and Ebner, F. F., 1981, An ultrastructural and biochemical analysis of norepinephrine-containing varicosities in the cerebral cortex of the turtle Pseudemys, J. Comp. Neurol. 195:289–304.

    Article  PubMed  CAS  Google Scholar 

  • Ouimet, D. C., Patrick, R. L., and Ebner, F. F., 1985, The projection of three extrathalamic cell groups to the cerebral cortex of the turtle Pseudemys, J. Comp. Neurol. 237:77–84.

    Article  PubMed  CAS  Google Scholar 

  • Papez, J. W., 1935, Thalamus of turtles and thalamic evolution, J. Comp. Neurol. 61:433–475.

    Article  Google Scholar 

  • Parent, A., 1973. Distribution of monoamine-containing nerve terminals in the brain of the painted turtle, Chrysemys picta, J. Comp. Neurol. 148:153–166.

    Article  PubMed  CAS  Google Scholar 

  • Parent, A., 1979, Monoaminergic systems of the brain, in: Biology of the Reptilia, Volume 10 (C. Gans, R. G. Northcutt, and P. S. Ulinski, eds.), Academic Press, New York, pp 247–285.

    Google Scholar 

  • Parent, A., 1986, Comparative Neurobiology of the Basal Ganglia, Wiley, New York.

    Google Scholar 

  • Parent, A., and Poirer, L. J., 1971, Occurrence and distribution of monoamine-containing neurons in the brain of the painted turtle (Chrysemys picta), J. Anat. 110:81–89.

    PubMed  CAS  Google Scholar 

  • Parent, A., and Poitras, D., 1974, The origin and distribution of catecholaminergic axon terminals in the cerebral cortex of the turtle (Chrysemys picta), Brain Res. 78:345–358.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, T. S., 1970, The nose and Jacobson’s organ, in: Biology of the Reptilia, Volume 2 (C. Gans and T. S. Parsons, eds.), Academic Press, New York, pp. 99–192.

    Google Scholar 

  • Perez-Clausell, J., 1988, The organization of zinc-containing terminal fields in the brain of the lizard Podarcis hispanica. A histochemical study, J. Comp. Nenrol. 267:153–171.

    Article  CAS  Google Scholar 

  • Peters, S., Koh, J., and Choi, D. W., 1987, Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons, Science 236:589–593.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, E., 1980, Behavioral studies of telencephalic function in reptiles, in: Comparative Neurology of the Telencephalon (S. O. E. Ebbesson, ed.), Plenum Press, New York, pp. 343–388.

    Chapter  Google Scholar 

  • Pivavarov, A. S., and Trepakov, V. V., 1972, Intracellular analysis of unit responses to afferent stimulation in the general and hippocampal cortex of turtles, Neurosci. Behav. Physiol. 6:144–150.

    Article  Google Scholar 

  • Platel, R., 1969, Etude cytoarchitectonique qualitative et quantitative des aires corticals d’un saurien Scincus scinus (L.) Scincides, J. Hirnforsch. 11:31–66.

    PubMed  CAS  Google Scholar 

  • Platel, R., Beckers, H. J. A., and Nieuwenhuys, R., 1973, Les champs corticaux chez Testudo hermanni (reptile chélonien) et chez Caiman crocodylus (reptile crocodilien), Acta Morphol. Neerl. Scand. 11:121–150.

    PubMed  CAS  Google Scholar 

  • Powell, T. P. S., and Kruger, L., 1960, The thalamic projection upon the telencephalon in Lacerta viridis, J. Anat. 94:528–542.

    PubMed  CAS  Google Scholar 

  • Prasada Rao, P. D., and Subhedar, N., 1977, A cytoarchitectonic study of the hypothalamus of the lizard, Calotes versicolor, Cell Tissue Res. 180:63–85.

    PubMed  CAS  Google Scholar 

  • Prasada Rao, P. D., Subhedar, N., and Davie Raju, P., 1981, Cytoarchitectonic patterns of the hypothalamus in the cobra, Naja naja, Cell Tissue Res. 217:505–529.

    Article  Google Scholar 

  • Pritchard, P. C. H., 1967, Living Turtles of the World, T. F. H. Publications, Hong Kong.

    Google Scholar 

  • Pritz, M. B., and Stritzel, M. E., 1987, Percentage of intrinsic and relay cells in a thalamic nucleus projecting to general cortex in reptiles, Caiman crocodilus, Brain Res. 409:146–150.

    Article  PubMed  CAS  Google Scholar 

  • Pyrethon, J., and Dusan-Pyrethon, D., 1969, Etude polygraphique du cycle vielle-sommeil chez trois genres de reptiles, C.R. Soc. Biol. 163:181–186.

    Google Scholar 

  • Quay, W. B., 1979, The parietal eye-pineal complex, in: The Biology of the Reptilia, Volume 9 (C. Gans, R. G. Northcutt, and P. S. Ulinski, eds.), Academic Press, New York, pp. 245–406.

    Google Scholar 

  • Rainey, W. T., 1979, Organization of nucleus rotundus, a tectofugal thalamic nucleus in turtles. I. Nissl and Golgi analyses, J. Morphol. 160:121–142.

    Article  PubMed  CAS  Google Scholar 

  • Rainey, W. T., and Ulinski, P. S., 1982a, Organization of nucleus rotundus, a tectofugal thalamic nucleus in turtles. II. The tectorotundal projection, J. Comp. Neurol. 209:187–207.

    Article  PubMed  CAS  Google Scholar 

  • Rainey, W. T., and Ulinski, P. S., 1982b, Organization of nucleus rotundus, a tectofugal thalamic nucleus in turtles. III. Ultrastructural analyses, J. Comp. Neurol. 209:208–223.

    Article  PubMed  CAS  Google Scholar 

  • Rainey, W. T., and Ulinski, P. S., 1986, Morphology of neurons in the dorsal lateral geniculate complex in turtles of the genera Pseudemys and Chrysemys, J. Comp. Neurol. 253:440–465.

    Article  PubMed  CAS  Google Scholar 

  • Ramón, P., 1891, El encefalo de los reptiles, Trab. Lab. Hist. Fac. Med. Zaragoza pp. 1-30.

    Google Scholar 

  • Ramón, P., 1896, Estructura del encefalo del camaleon, Rev. Trim, Microgr. 1:146–182.

    Google Scholar 

  • Reese, A. M., 1910, The development of the brain of the American alligator, Smithson. Misc. Collect. 54(2):1922.

    Google Scholar 

  • Reiner, A., 1983, Comparative studies of opioid peptides: Enkephalin distribution in turtle central nervous system, Neurosci. Abstr. 9:439.

    Google Scholar 

  • Reiner, A., and Karten, H. J., 1985, Comparison of olfactory bulb projections in pigeons and turtles, Brain Behav. Evol. 27:11–27.

    Article  PubMed  CAS  Google Scholar 

  • Reiner, A., and Powers, A. S., 1983, The effects of lesions of telencephalic visual structures on visual discriminative performance in turtles (Chrysemys picta picta), J. Comp. Neurol. 218:1–24.

    Article  PubMed  CAS  Google Scholar 

  • Reiner, A., Brauth, S. E., and Karten, H. J., 1984, Evolution of the amniote basal ganglia, Trends Neurosci. 7:320–325.

    Article  Google Scholar 

  • Reiner, A., Eldred, W. D., Beinfeld, M. C., and Krause, J. E., 1985, The co-occurrence of a substance P-like peptide and cholecystokinin-8 in a fiber system of turtle cortex, J. Neurosci. 5:1527–1544.

    PubMed  CAS  Google Scholar 

  • Reperant, M. J., 1976, Afferences et efferences telencephaliques du cortex dorsal de la vipere (Vipera aspis L.) Donnees preliminaries, C.R. Acad. Sci. 283:809–812.

    CAS  Google Scholar 

  • Riss, W., Halpern, M., and Scalia, F., 1969, The quest for clues to forebrain evolution—The study of reptiles, Brain Behav. Evol. 2:1–50.

    Article  Google Scholar 

  • Romer, A. S., 1956, Osteology of the Reptiles, University of Chicago Press, Chicago.

    Google Scholar 

  • Rose, M., 1923, Histologische Lokalisation des Vorderhirns der Reptilien, J. Psychol. Neurol. 29:219–272.

    Google Scholar 

  • Scalia, F., Halpern, M., and Riss, W., 1969, Olfactory bulb projections in the South American caiman, Brain Behav. Evol. 2:238–262.

    Article  Google Scholar 

  • Schlegel, J. R., and Kriegstein, A. R., 1987, Quantitative autoradiography of muscarinic and benzodiazepine receptors in the forebrain of the turtle, Pseudemys scripta, J. Comp. Neurol. 265:521–529.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, K. P., and Inger, R. F., 1957, Living Reptiles of the World, Doubleday, New York.

    Google Scholar 

  • Schwerdtfeger, W. K., and Lorente, M.-J., 1988a, GABA-immunoreactive neurons in the medial and dorsomedial cortices of the lizard. Some data on their structure, distribution and synaptic relations, in: Recent Advances in Understanding the Structure and Function of the Forebrain in Reptiles (W. K. Schwerdtfeger and W. J. Smeets, eds.), Karger, Basel, pp. 110–121.

    Google Scholar 

  • Schwerdtfeger, W. K., and Lorente, M.-J., 1988b, Laminar distribution and morphology of gammaaminobutryric acid (GABA)-immunoreactive neurons in the medial and dorsomedial areas of the cerebral cortex of the lizard Podarcis hispanica, J. Comp. Neurol. 278:473–485.

    Article  PubMed  CAS  Google Scholar 

  • Schwerdtfeger, W. K., and Smeets, W. J., (eds.), 1988, Recent Advances in Understanding the Structure and Function of the Forebrain in Reptiles, Karger, Basel.

    Google Scholar 

  • Schwerdtfeger, W. K., Lopez-Garcia, C., Martinez-Guijarro, F. J., and Roberto, P. L. T., 1986, GABAergic neurons in the septum of the lizard, Podarcis hispanica, Brain Res. 384:184–188.

    Article  PubMed  CAS  Google Scholar 

  • Senn, D. G., 1979, Embryonic development of the central nervous system, in: Biology of the Reptilia, Volume 9 (C. Gans, R. G. Northcutt, and P. S. Ulinski, eds.), Academic Press, New York, pp. 173–244.

    Google Scholar 

  • Senn, D. G., and Northcutt, R. G., 1973, The forebrain and midbrain of some squamates and their bearing on the origin of snakes, J. Morphol. 140:135–152.

    Article  PubMed  CAS  Google Scholar 

  • Shanklin, W. M., 1930, The central nervous system of Chameleo vulgaris, ActaZool. (Stockholm) 11:425–490.

    Article  Google Scholar 

  • Shen, J. M., and Kriegstein, A. R., 1987, Turtle hippocampal cortex contains distinct cell types, burstfiring neurons, and an epileptogenic subfield, J. Neurophysiol. 56:1616–1649.

    Google Scholar 

  • Shen, J. M., Huguenard, J. R., and Kriegstein, A. R., 1987, Development of cortical inhibition: Functional GABA A receptors at earliest stages of corticogenesis, Neurosci. Abstr. 13:954.

    Google Scholar 

  • Sjostrom, A. M., and Ulinski, P. S., 1985, Morphology of retinogeniculate terminals in the turtle, Psuedemys scripta elegans, J. Comp. Neurol. 238:107–120.

    Article  PubMed  CAS  Google Scholar 

  • Skeen, L. C., Pindzola, R. R., and Schofield, B. R., 1984, Tangential organization of olfactory, association, and commissural projections to olfactory cortex in a species of reptile (Trionyx spiniferus), bird (Aix sponsa), and mammal (Tupaia glis), Brain Behav. Evol. 25:206–216.

    Article  PubMed  CAS  Google Scholar 

  • Sligar, C. M., and Voneida, T. J., 1981, Efferent projections of the septum in the tegu lizard, Tupinambis nigropunctatus, Anat. Rec. 201:197–202.

    Article  PubMed  CAS  Google Scholar 

  • Smeets, W. J. A. J., 1988, The distribution of dopamine immunoreactivity in the forebrain and midbrain of the snake Python regius: A study with antibodies against dopamine, J. Comp. Neurol. 271:115–129.

    Article  PubMed  CAS  Google Scholar 

  • Smeets, W. J. A. J., and Steinbusch, H. W. M., 1988, Distribution of serotonin immunoreactivity in the forebrain and midbrain of the lizard Gekko gecko, J. Comp. Neurol. 271:419–434.

    Article  PubMed  CAS  Google Scholar 

  • Smeets, W. J. A. J., Nieuwenhuys, R., and Roberts, B. L., 1983, The Central Nervous System of Cartilaginous Fishes, Springer, Berlin.

    Book  Google Scholar 

  • Smeets, W. J. A. J., Hoogland, P. V., and Lohman, A. H. M., 1986, A forebrain atlas of the lizard Gekko gekko, J. Comp. Neurol. 254:1–19.

    Article  PubMed  CAS  Google Scholar 

  • Smeets, W. J. A. J., Jonker, A. J., and Hoogland, P. V., 1987, Distribution of dopamine in the forebrain and midbrain of the red-eared turtle, Pseudemys scripta elegans, reinvestigated using antibodies against dopamine, Brain Behav. Evol. 30:121–142.

    Article  PubMed  CAS  Google Scholar 

  • Smith, L. M., Ebner, F. F., and Colonnier, M., 1980, The thalamocortical projection in Pseudemys turtles: A quantitative electron microscope study, J. Comp. Neurol. 190:445–462.

    Article  PubMed  CAS  Google Scholar 

  • Sotelo, C., Llinas, R., and Baker, R., 1974, Structural study of inferior olivary nucleus of the cat: Morphological correlates of electronic coupling, J. Neurophysiol. 37:541–559.

    PubMed  CAS  Google Scholar 

  • Starck, D., 1979, Cranio-cerebral relations in recent reptiles, in: Biology of the Reptilia, Volume 9 (C. Gans, R. G. Northcutt, and P. S. Ulinski, eds.), Academic Press, New York, pp. 1–38.

    Google Scholar 

  • Stensaas, L. J., and Stensaas, S. S., 1968, Light microscopy of glial cells in turtles and birds, Z. Zellforsch. 91:315–340.

    Article  PubMed  CAS  Google Scholar 

  • Subhedar, N., and Rama Krishna, N. S., 1984, A Golgi-type study of the hypothalamus of the lizard, Calotes versicolor, Cell Tissue Res. 236:399–411.

    Article  PubMed  CAS  Google Scholar 

  • Tandler, J., and Kantor, H., 1907, Die Entwicklungsgeschicte des Geckogehirnes, Anat. Hefte 33:553–665.

    Article  Google Scholar 

  • ten Donkelaar, H. J., and Nieuwenhuys, R., 1979, The brainstem, in: Biology of the Reptilia, Volume 10 (C. Gans, R. G. Northcutt, and P. S. Ulinski, eds.), Academic Press, New York, pp. 133–200.

    Google Scholar 

  • ten Donkelaar, H.J., Bangma, G. C., Barbas-Henry, H. A., DeBoer-van Huizen, R., and Wolters, J. G., 1987, The brainstem in a lizard, Varanus exanthematicus, Adv. Anat. Embryol. Cell Biol. 107:1–168.

    Article  PubMed  Google Scholar 

  • Ulinski, P. S., 1974, Cytoarchitecture of cerebral cortex in snakes, J. Comp. Neurol. 158:243–266.

    Article  PubMed  CAS  Google Scholar 

  • Ulinski, P. S., 1975, Corticoseptal projections in the snakes Natrix sipedon and Thamnophis sirtalis, J. Comp. Neurol 164:375–388.

    Article  PubMed  CAS  Google Scholar 

  • Ulinski, P. S., 1976, Intracortical connections in the snakes Natrix sipedon and Thamnophis sirtalis, J. Morphol. 150:463–484.

    PubMed  CAS  Google Scholar 

  • Ulinski, P. S., 1977a, Intrinsic organization of snake medial cortex: An electron microscopic and Golgi study, J. Morphol 152:247–280.

    Article  PubMed  CAS  Google Scholar 

  • Ulinski, P. S., 1977b, Tectal efferents in the banded water snake, Natrix sipedon, J. Comp. Neurol. 173:251–274.

    Article  PubMed  CAS  Google Scholar 

  • Ulinski, P. S., 1979, Intrinsic organization of snake dorsomedial cortex: An electronmicroscopic and Golgi study, J. Morphol 161:185–210.

    Article  PubMed  CAS  Google Scholar 

  • Ulinski, P. S., 1981, Thick caliber projections from brainstem to cerebral cortex in the snakes Thamnophis sirtalis and Natrix sipedon, Neuroscience 6:1725–1743.

    Article  PubMed  CAS  Google Scholar 

  • Ulinski, P. S., 1983, Dorsal Ventricular Ridge: A Treatise on Forebrain Organization in Reptiles and Birds, Wiley-Interscience, New York.

    Google Scholar 

  • Ulinski, P. S., 1986a, Neurobiology of the therapsid-mammal transition, in: The Ecology and Biology of Mammal-Like Reptiles (J. J. Roth, E. C. Roth, P. D. MacLean, and N. Hotton III, eds.), Smithsonian Institution, Washington, D.C., pp. 149–172.

    Google Scholar 

  • Ulinski, P. S., 1986b, Organization of corticogeniculate projections in the turtle, Pseudemys scripta, J. Comp. Neurol. 254:529–542.

    Article  PubMed  CAS  Google Scholar 

  • Ulinski, P. S., 1987a, Ultrastructure of the dorsal lateral geniculate complex in turtles of the genera Pseudemys and Chrysemys, Brain Behav. Evol. 29:117–142.

    Article  Google Scholar 

  • Ulinski, P. S., 1987b, Laminar organization of efferents from turtle dorsal lateral geniculate complex, Am. Zool. 27:166A.

    Google Scholar 

  • Ulinski, P. S., 1987c, Distribution of GABA accumulating neurons in the diencephalon of the turtle, Pseudemys scripta, Anat. Rec. 218:141A.

    Google Scholar 

  • Ulinski, P. S., 1988, Functional organization of turtle visual cortex, in: Recent Advances in Understanding the Structure and Function of the Forebrain in Reptiles (W. K. Schwerdtfeger and W. J. Smeets, eds.), Karger, Basel, pp. 151–161.

    Google Scholar 

  • Ulinski, P. S., and Kanarek, D. A., 1973, Cytoarchitecture of nucleus sphericus in the common boa, Constrictor constrictor, J. Comp. Neurol 151:159–174.

    Article  PubMed  CAS  Google Scholar 

  • Ulinski, P. S., and Mulligan, K. A., 1987, Representation of visual space in the visual cortex of turtles, Neurosci. Abstr. 13:1048.

    Google Scholar 

  • Ulinski, P. S., and Nautiyal, J., 1988, Organization of retinogeniculate projections in turtles of the genera Pseudemys and Chrysemys, J. Comp. Neurol 276:92–112.

    Article  PubMed  CAS  Google Scholar 

  • Ulinski, P. S., and Peterson, E. H., 1981, Patterns of olfactory projections in the desert iguana, Dipsosaurus dorsalis, J. Morph. 168:189–228.

    Article  Google Scholar 

  • Ulinski, P. S., and Rainey, W. T., 1980, Intrinsic organization of snake lateral cortex, J. Morphol. 165:85–116.

    Article  Google Scholar 

  • Ulinski, P. S., du Lac, S., and Dacey, D. M., 1983, Descending projections of the geniculate complex, Invest. Ophthalmol. Vis. Sci. 24:64.

    Google Scholar 

  • Umeda, S., Takeuchi, Y., and Sano, Y., 1983, Immuno-histochemical demonstration of serotonin neurons in the central nervous system of the turtle (Clemmys japonica), Anat. Embryol. 168:1–19.

    Article  Google Scholar 

  • Unger, L., 1906, Untersuchungen über die Morphologie und Faserung des Reptiliengehirns. I. Das Vorderhirn des Geckos, Anat. Hefte 31:273–348.

    Google Scholar 

  • Vasilescu, E., 1970, Sleep and wakefulness in the tortoise (Emys orbicularis), Rev. Roum. Biol. Ser. Zool. 15:177–179.

    Google Scholar 

  • Voneida, T. J., and Ebbesson, S. O. E., 1969, On the origin and distribution of axons in the pallial commissures in the tegu lizard (Tupinambis nigropunctatus), Brain Behav. Evol. 2:467–481.

    Article  Google Scholar 

  • Walker, J. M., and Berger, R. J., 1973, A polygraphic study of the tortoise (Testudo denticulata). Absence of electrophysiological signs of sleep, Brain Behav. Evol. 8:453–467.

    Article  PubMed  CAS  Google Scholar 

  • Ware, C. B., 1974, Projections of dorsal cortex in the side necked turtle (Podocnemis unifilis, Soc. Neurosci., 4th Annu. Meet., p. 466.

    Google Scholar 

  • Warner, F. J., 1931, The cell masses in the telencephalon and diencephalon of the rattlesnake, Crotalus atrox, Proc. Acad. Sci. (Amsterdam) 34:1156–1163.

    Google Scholar 

  • Warner, F. J., 1946, The development of the forebrain of the American watersnake (Natrix sipedon), J. Comp. Neurol. 84:385–418.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, J. C., and Ulinski, P. S., 1985, Synaptic organization of dorsal area of turtle, Pseudemys scripta elegans, J. Morphol. 184:135–154.

    Article  PubMed  CAS  Google Scholar 

  • Westbrook, G. L., and Mayer, M. L., 1987, Micromolar concentrations of Zn 2+ antagonize NMDA and GABA responses of hippocampal neurons, Nature 328:640–643.

    Article  PubMed  CAS  Google Scholar 

  • Wolters, J. G., ten Donkelaar, H. J., and Verhofstad, A. A. J., 1984, Distribution of catecholamines in the brain stem and spinal cord of the lizard Varanus exanthematicus: An immunohistochemical study based on the use of antibodies to tyrosine hydroxylase, Neuroscience 13:469–497.

    Article  PubMed  CAS  Google Scholar 

  • Wolters, J. G., ten Donkelaar, H. J., Steinbusch, H. W. M., and Verhofstan, A. A. J., 1985, Distribution of serotonin in the brain stem and spinal cord of the lizard Varanus exanthematicus: An immunohistochemical study, Neuroscience 14:169–193.

    Article  PubMed  CAS  Google Scholar 

  • Wouterlood, F. G., Alones, V. E., and Lohman, A. H. M., 1981, An electron microscopic study of the mediodorsal cerebral cortex in the lizard Agama agama, Anat. Embryol. 163:185–200.

    Article  Google Scholar 

  • Wouterlood, F. G., Alones, V. E., Elprana, D., and Lohman, A. H. M., 1982, Terminal degeneration in the mediodorsal cerebral cortex of the lizard Agama agama: Light and electron microscopy, J. Morphol. 172:45–58.

    Article  Google Scholar 

  • Yamamoto, K. M., and Shimizu, N., 1977, Comparative anatomy of the topography of catecholamine containing neuron system in the brain stem from birds to teleosts, J. Hirnforsch. 18:229–240.

    PubMed  CAS  Google Scholar 

  • Zangerl, R., 1969, The turtle shell, in: Biology of the Reptilia, Volume 1 (C. Gans, A. d’A. Bellairs, and T. S. Parson, eds.), Academic Press, New York, pp. 311–340.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ulinski, P.S. (1990). The Cerebral Cortex of Reptiles. In: Jones, E.G., Peters, A. (eds) Comparative Structure and Evolution of Cerebral Cortex, Part I. Cerebral Cortex, vol 8A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9622-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9622-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9624-7

  • Online ISBN: 978-1-4757-9622-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics