Skip to main content

Behavioral Pharmacology of Memory

Opportunities for Cellular Explanations

  • Chapter

Abstract

Recent progress in understanding molecular and cellular mechanisms of conditioning make it timely to reevaluate interfaces between well-defined unitary cellular mechanisms and subtle, complex, multifactorial animal behaviors. The purpose of this chapter is to call attention to two robust phenomena observed during studies of the behavioral pharmacology of memory. We consider these phenomena to provide interesting possibilities for exploration at the cellular level. The first phenomenon is that pharmacological probes of memory in living organisms can have opposite effects. That is to say, a given drug in a given experimental paradigm can either enhance or impair memory, depending on dose. The second phenomenon is that several two-drug combinations exhibit powerful supraadditivity (as much as 20-fold) of memory-enhancing potency. The question is, can molecular and cellular approaches help to explain these two phenomena? The interfaces involve multiple interactions and functional linkages (Schmitt and Schneider, 1975). Atkinson (1975) has pointed out:

Any discussion of biological processes must always involve oversimplification, because bio-molecular reactions are always part of a larger whole. Biomolecular processes may be of some interest in their own right, but their biological significance relates to their effects on a larger system.

The black box approach, in which the intermediate mechanisms between a stimulus and its induced response are not considered, can lead, and has led, to much useful information in physiology and biophysics. It poses questions that a mechanistically oriented approach can then be used to resolve. However, this approach is limited and in a sense outmoded.

In contrast, biochemists deal with small portions of large systems and frequently become so intrigued with the properties of these parts that they forget that they are, in situ, functioning elements within a complex interacting system....

These two basic approaches must be combined in order to obtain information that is biologically meaningful. Every aspect of an organism is designed by mutation and selection, but we must remember that while it is molecular detail that mutates, it is overall organismic function that is selected. Both the molecular and the black-box approaches must be used, but the area of real interest is in the linkage between them, the ways in which molecular detail is responsible for the overall response or for the living functioning organism.

Dosis toxinum facit.

Paracelsus

When we try to pick out anything by itself, we find it hitched to everything else in the universe.

John Muir

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aigner, T. G., and Mishkin, M., 1986, The effects of physostigmine and scopolamine on recognition memory in monkeys, Behay. Neural Biol. 45: 81–87.

    Article  CAS  Google Scholar 

  • Alkon, D. L., Sakakibara, M., Forman, R., Harrigan, J., Lederhendler, I., and Farley, J., 1985, Reduction of two voltage-dependent K+ currents mediates retention of a learned association, Behay. Neural Biol. 44: 278–300.

    Article  CAS  Google Scholar 

  • Altman, J., 1985, Tuning in to neurotransmitters, Nature 315: 537.

    Article  PubMed  CAS  Google Scholar 

  • Atkinson, D. E., 1975, Allosteric interactions in enzyme systems, in: Functional Linkage in Biomolecular Systems ( F. O. Schmitt and D. M. Schneider, eds.), Raven Press, New York, pp. 43–56.

    Google Scholar 

  • Bartus, R. T., 1979, Physostigmine and recent memory: Effects in young and aged nonhuman primates, Science 206: 1087–1089.

    Article  PubMed  CAS  Google Scholar 

  • Bartus, R. T., Dean, R. L., Sherman, K. A., Friedman, E., and Beer, B., 1981, Profound effects of combining choline and piracetam on memory enhancement and cholinergic function in aged rats, Neurobiol. Aging 2: 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Bechara, A., and van der Kooy, D., 1985, Opposite motivational effects of endogenous opioids in brain and periphery, Nature 314: 533–534.

    Article  PubMed  CAS  Google Scholar 

  • Bovet, D., Bovet-Nitti, F., and Oliverio, A., 1966, Effects of nicotine on avoidance conditioning of inbred strains of mice, Psychopharmacologia (Berl.) 10: 1–5.

    Article  CAS  Google Scholar 

  • Butler, D. E., Poschel, B. P. H., and Marriott, J. G., 1981, Cognition-activating properties of 3-(aryloxy) pyridines, J. Med. Chem. 24: 346–350.

    Article  PubMed  CAS  Google Scholar 

  • Butler, D. E., Nordin, I. C., L’Italien. Y. J., Zweisler, L., Poschel, P. H., and Marriott, J. G., 1984, Amnesia-reversal activity of a series of N-[(disubstituted-amino) alkyl]-2-oxo-l-pyrrolidineacetamides, including pramiracetam, J. Med. Chem. 27: 684–691.

    Article  PubMed  CAS  Google Scholar 

  • Cherkin, A., Meinecke, R. O., and Garman, M. W., 1975, Retrograde enhancement of memory by mild flurothyl treatment in the chick, Physiol. Behay. 14: 151–158.

    Article  CAS  Google Scholar 

  • Davies, P., 1985, Is it possible to design rational treatments for the symptoms of Alzheimer’s disease? Drug Dev. Res. 5: 69–76.

    Article  Google Scholar 

  • Davis, K. L., Mohs, R. C., Tinklenberg, J.R., Pfefferbaum, J. R., Hollister, L. E., and Kapell, B. S., 1978, Physostigmine: Improvement of long-term memory processes in normal humans, Science 210: 272–274.

    Article  Google Scholar 

  • Fekete, M., and De Wied, D., 1982, Dose-related facilitation and inhibition of passive avoidance behavior by the ACTH 4–9 analog (ORG 2766), Pharmacol. Biochem. Behay. 17: 177–182.

    Article  CAS  Google Scholar 

  • Flood, J. F., and Cherkin, A., 1986, Scopolamine effects on memory retention in mice: A model of dementia? Behay. Neural Biol. 45: 169–184.

    Article  CAS  Google Scholar 

  • Flood, J. F., Landry, D. W., and Jarvik, M. E., 1981, Cholinergic receptor interactions and their effects on long-term memory processing, Brain Res. 215: 177–185.

    Article  PubMed  CAS  Google Scholar 

  • Hood, J. F., Smith, G. E., and Cherkin, A., 1983, Memory retention: Potentiation of cholinergic drug combinations in mice, Neurobiol. Aging 4: 37–43.

    Article  Google Scholar 

  • Flood, J. F., Smith, G. E., and Cherkin, A., 1985, Memory enhancement: Supraadditive effect of subcutaneous cholinergic drug combinations in mice, Psychopharmacology 86: 61–67.

    Article  PubMed  CAS  Google Scholar 

  • Gold, P. E., 1986, Glucose modulation of memory storage, Behay. Neural Biol. 45: 342–349.

    Article  CAS  Google Scholar 

  • Izquierdo, I., 1984, Endogenous state dependency: Memory depends on the relation between the neurohumoral and hormonal states present after training and at the time of testing, in: Neurobiology of Learning and Memory ( G. Lynch, J. L. McGaugh, and N. M. Weinberger, eds.), Guilford Press, New York, pp. 333–350.

    Google Scholar 

  • Johns, C. A., Haroutunian, V., Greenwall, B. S., Mohs, R. G., Davis, B. M., Kanof, P., Horvath, T. B., and Davis, K. L., 1985, Development of cholinergic drugs for the treatment of Alzheimer’s disease, Drug Dev. Res. 5: 77–96.

    Article  Google Scholar 

  • Kandel, E. R., 1985, Cellular mechanisms of learning and the biological basis of individuality, in: Principles of Neural Science, 2nd ed. ( E. R. Kandel and J. H. Schwartz, ed.), Elsevier, New York, pp. 816–833.

    Google Scholar 

  • Krivanek, J. A., and McGaugh, J. L., 1968, Effects of pentylenetetrazol on memory storage in mice, Psychopharmacologia (Berl.) 12: 303–321.

    Article  CAS  Google Scholar 

  • Krivanek, J. A., and McGaugh, J. L., 1969, Facilitating effects of pre-and posttrial amphetamine and discrimination learning, Agents Actions 1: 36–42.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M., and Gold, P. E., 1987, Memory enhancement and impairment with intracerebroventricular glucose injections (in preparation).

    Google Scholar 

  • McGaugh, J. L., and Krivanek, J. A., 1970, Strychnine effects on discrimination learning in mice: Effects of dose and time of administration, Physiol. Behay. 5: 1437–1442.

    Article  CAS  Google Scholar 

  • McGaugh, J. L., Liang, K. C., Bennett, C., and Sternberg, D. B., 1984, Adrenergic influences on memory storage: Interaction of peripheral and central systems, in: Neurobiology of Learning and Memory ( G. Lynch, J. L. McGaugh, and N. M. Weinberger, eds.), Guilford Press, New York, pp. 313–332.

    Google Scholar 

  • Paalzow, L. K., Paalzow, G. H. M., and Tfelt-Hansen, P., 1985, Variability in bioavailability: Concentration versus effect, in: Variability in Drug Therapy: Description, Estimation, and Control ( M. Rowland, L. B. Sheiner, and J. L. Steimer, eds.), Raven Press, New York, pp. 167–185.

    Google Scholar 

  • Platel, A., Jalfre, M., Pawelec, C., Roux, S., and Porsolt, R. D., 1984, Habituation of exploratory activity in mice: Effects of combinations of piracetam and choline on memory processes, Pharmacol. Biochem. Behay. 21: 209–212.

    Article  CAS  Google Scholar 

  • Popot, J. L., and Changeux, J. P., 1984, Nicotinic receptor of acetylcholine: Structure of an oligomeric integral membrane protein, Physiol. Rev. 64: 1162–1239.

    PubMed  CAS  Google Scholar 

  • Riege, W. H., and Cherkin, A., 1976, Memory performance after flurothyl treatment in rainbow trout, Psychopharmacologia 46: 31–35.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, F. O., and Schneider, D. M., eds., 1975, Functional Linkage in Biomolecular Systems, Raven Press, New York.

    Google Scholar 

  • Shih, Y. H., and Pugsley, T. A., 1985, The effects of various cognition-enhancing drugs on in vitro rat hippocampal synaptosomal sodium dependent high affinity choline uptake, Life Sci. 36: 2145–2152.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, S. F., Chow, Y. K., and Bilezikian, J. P., 1986, Regulation of rat heart membrane adenylate cyclase by magnesium and manganese, J. Pharmacol. Exp. Ther. 237: 764–772.

    PubMed  CAS  Google Scholar 

  • Stratton, L. O., and Petrinovich, L., 1963, Post-trial injections of an anticholinesterase drug and maze learning in two strains of rats, Psychopharmacologia 5: 47–54.

    Article  PubMed  CAS  Google Scholar 

  • Votava Z., 1967, Pharmacology of the central cholinergic synapses, Annu. Rev. Pharmacol. 7: 233–240.

    Article  Google Scholar 

  • Wilson, C. A., 1986, Society for drug reasearch symposium: Senile dementia of the Alzheimer type, Neurobiol. Aging 7: 219–222.

    Article  Google Scholar 

  • Wolthuis, O. L., 1981, Behavioral effects of etiracetam in rats, Pharmacol. Biochem. Behay. 15: 247–255.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cherkin, A., Flood, J.F. (1988). Behavioral Pharmacology of Memory. In: Woody, C.D., Alkon, D.L., McGaugh, J.L. (eds) Cellular Mechanisms of Conditioning and Behavioral Plasticity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9610-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9610-0_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9612-4

  • Online ISBN: 978-1-4757-9610-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics