Skip to main content

Electrodiffusion Model of Electrical Conduction in Neuronal Processes

  • Chapter
Cellular Mechanisms of Conditioning and Behavioral Plasticity

Abstract

The cable model of electrical conduction in neurons is central to our understanding of information processing in neurons. The conduction of action potentials in axons has been modeled as a nonlinear excitable cable (Hodgkin and Huxley, 1952), and the integration of postsynaptic signals in dendrites has been studied with analytic solutions to passive cables (Rall, 1977). Recently, several groups have examined the possibility of more complex signal processing in dendrites with complex morphologies and excitable membranes by numerical integration of the cable equations (Shepherd et al., 1985; Koch et al., 1983; Rall and Segev, 1985; Perkel and Perkel, 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Coss, R. G., and Perkel, D. H., 1985, The function of dendritic spines, Behay. Neural Biol. 44: 151–185.

    Article  CAS  Google Scholar 

  • Fogelson, A. L., and Zucker, R. S., 1985, Presynaptic calcium diffusion from various arrays of single channels, Biophys. J. 48: 1003–1017.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, D. E., 1943, Potential, impedance and rectification in membranes, J. Gen. Physiol. 27: 37–60.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F. 1952, Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo, J. Physiol. (Lond.) 116: 449–472.

    CAS  Google Scholar 

  • Jack, J. J. B., Noble, D., and Tsien, R. W., 1975, Electrical Current Flow in Excitable Cells, Oxford University Press, Oxford.

    Google Scholar 

  • Koch, C., and Poggio, T., 1983, A theoretical analysis of electrical properties of spines, Proc. R. Soc. Lond. [Biol.] 218: 455–477.

    Article  CAS  Google Scholar 

  • Koch, C., Poggio, T., and Torre, V., 1983, Nonlinear interaction in a dendritic tree: Location, timing, and role in information processing, Proc. Natl. Acad. Sci. U.S.A. 80: 2799–2802.

    Article  PubMed  CAS  Google Scholar 

  • Perkel, D. H., and Perkel, D. J., 1985, Dendritic spines: Role of active membrane modulating synaptic efficacy, Brain Res. 325: 331–335.

    Article  PubMed  CAS  Google Scholar 

  • Rall, W., 1977, Core conductor theory and cable properties of neurons, in: Handbook of Physiology: The Nervous System ( E. R. Kandel, ed.), American Physiological Society, Bethesda, pp. 39–97.

    Google Scholar 

  • Rall, W., 1978, Dendritic spines and synaptic potency, in: Studies in Neurophysiology ( R. Porter, ed.), Cambridge University Press, Cambridge, pp. 203–209.

    Google Scholar 

  • Rall, W., and Segev, I., 1987, Functional possibilities for synapses on dendrites and dendritic spines, in: New Insights into Synaptic Function (G. M. Edelman, W. F. Gall, and W. M. Cowan, eds.), John Wiley & Sons, New York (in press).

    Google Scholar 

  • Shepherd, G. M., Brayton, R. K., Miller, J. P., Segev, I., Rinzel, J., and Rall, W., 1985, Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines, Proc. Natl. Acad. Sci. U.S.A. 82: 2192–2195.

    Article  PubMed  CAS  Google Scholar 

  • Simon, S. M., and Llinas, R. R., 1985, Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release, Biophys. J. 48: 485–498.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Qian, N., Sejnowski, T.J. (1988). Electrodiffusion Model of Electrical Conduction in Neuronal Processes. In: Woody, C.D., Alkon, D.L., McGaugh, J.L. (eds) Cellular Mechanisms of Conditioning and Behavioral Plasticity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9610-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9610-0_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9612-4

  • Online ISBN: 978-1-4757-9610-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics