Skip to main content

Fusion of Phospholipid Vesicles Induced by Divalent Cations and Protons

Modulation by Phase Transitions, Free Fatty Acids, Monovalent Cations, and Polyamines

  • Chapter
Cell Fusion

Abstract

Studies on the fusion of phospholipid vesicles have provided considerable insight into the molecular mechanism of membrane fusion and the role of specific molecules in this process. This simple and well-defined system has also helped in the development of fusion assays and the biophysical analysis of the fusion process. Early studies on fusion have been reviewed by Papahadjopoulos et al(1979) and Nir et al(1983a). Here we will discuss recent developments concerning the mechanism of membrane fusion induced by divalent cations and protons, and its modulation by the thermotropic properties of the phospholipid bilayer, monovalent cations and polyamines in the medium, and free fatty acids in the membrane.

The wrong view of science betrays itself in the craving to be right; for it is not his possession of knowledge, of irrefutable truth, that makes the man of science, but his persistent and recklessly critical quest for truth.

—Karl R. Popper, The Logic of Scientific Discovery

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ANTS:

1, aminonapthalene-3,6,8-trisulfonic acids

CHEMS:

cholesterylhemisuccinate

DEPS:

dielaidoylphosphatidylserine

DPA:

dipicolinic acid

DMPE:

dimyristoylphosphatidylethanolamine

DOPC:

dioleoylphosphatidylcholine

DOPE:

dioleoylphosphatidylethanolamine

DOPS:

dioleoylphosphatidylserine

DPPC:

dipalmitoylphosphatidylcholine

DPX:

p-xylylene-bis-pyridinium bromide

LUV:

large unilamellar vesicles (approx. 100-nm diameter)

NBD-PE:

N-(7-nitro-2,1,3,-benzoxa-diazol-4-yl)phosphatidylethanolamine

PA:

phosphatidate (phosphatidic acid)

PC:

(egg) phosphatidylcholine

PE:

(egg) phosphatidylethanolamine

PG:

phosphatidylglycerol

PI:

phosphatidylinositol

PS:

(bovine brain) phosphatidylserine

SUV:

small unilamellar vesicles (approx. 30-nm diameter)

TH :

temperature range of the lamellar-hexagonal phase transition

TPE:

phosphatidylethanolamine synthesized by transphosphatidylation of egg phosphatidylcholine.

References

  • Baldwin, P. A., Düzgüneş, N., and Papahadjopoulos, D., 1985, Free fatty acids affect H+and Ca2+-induced fusion of model membranes, Biophys. J.47:112a.

    Google Scholar 

  • Baldwin, P. A., Düzgüneş, N., and Papahadjopoulos, D., 1986, The fate of liposome contents during proton-induced fusion is affected by hexagonal phase transitions in liposomes composed of fatty acids and phosphatidylethanolamine, in preparation.

    Google Scholar 

  • Bangham, A. D., 1968, Membrane models with phospholipids, Prog. Biophys. Mol. Biol. 18:29–95.

    Article  PubMed  CAS  Google Scholar 

  • Bangham, A. D., Standish, M. M., and Watkins, J. C., 1965, Diffusion of univalent ions across lamellae of swollen phospholipids, J. Mol. Biol. 13:238–252.

    Article  PubMed  CAS  Google Scholar 

  • Bearer, E. L., Düzgüneş, N., Friend, D. S., and Papahadjopoulos, D., 1982, Fusion of phospholipid vesicles arrested by quick-freezing. The question of lipidic particles as intermediates in membrane fusion, Biochim. Biophys. Acta 693:93–98.

    Article  PubMed  CAS  Google Scholar 

  • Bentz, J., and Düzgüneş, N., 1985, Fusogenic capacities of divalent cations and effect of liposome size, Biochemistry 24:5436–5443.

    Article  PubMed  CAS  Google Scholar 

  • Bentz, J., Nir, S., and Wilschut, J., 1983a, Mass action kinetics of vesicle aggregation and fusion, Colloids Surfaces 6:333–363.

    Article  CAS  Google Scholar 

  • Bentz, J., Düzgüneş, N., and Nir, S., 1983b, Kinetics of divalent cation induced fusion of phosphatidylserine vesicles: Correlation between fusogenic capacities and binding affinities, Biochemistry 22: 3320–3330.

    Article  CAS  Google Scholar 

  • Bentz, J., Düzgüneş, N., and Nir, S., 1985a, Temperature dependence of divalent cation induced fusion of phosphatidylserine liposomes: Evaluation of the kinetic rate constants, Biochemistry 24:1064–1072.

    Article  PubMed  CAS  Google Scholar 

  • Bentz, J., Ellens, H., Lai, M. Z., and Szoka, F. C., Jr., 1985b, On the correlation between HIIphase and the contact-induced destabilization of phosphatidylethanolamine-contain-ing membranes, Proc. Natl Acad Sci. USA. 82:5742–5745.

    Article  PubMed  CAS  Google Scholar 

  • Boggs, J. M., Moscarello, M. A., and Papahadjopoulos, D., 1982, Interactions of myelin proteins with phospholipid membranes, in: The Molecular Biology of Lipid-Protein Interactions, Vol. 2 (O. H. Griffith and P. Jost, eds.), pp. 1–51, Wiley, New York.

    Google Scholar 

  • Braun, G., Lelkes, P. I., and Nir, S., 1985, Effect of cholesterol on Ca2+-induced aggregation and fusion of sonicated phosphatidylserine/cholesterol vesicles, Biochim. Biophys. Acta 812:688–694.

    Article  PubMed  CAS  Google Scholar 

  • Chernomordik, L. V., Kozlov, M. M., Melikyan, G. B., Abidor, I. G., Markin, V. S., and Chiz-madzhev, Y. A., 1985, The shape of lipid molecules and monolayer membrane fusion, Biochim. Biophys. Acta 812:643–655.

    Article  CAS  Google Scholar 

  • Cullis, P. R., and DeKruijff, B., 1979, Lipid polymorphism and the functional roles of lipids in biological membranes, Biochim. Biophys. Acta 559:399–420.

    Article  PubMed  CAS  Google Scholar 

  • Cullis, P. R., and Hope, M. J., 1978, Effects of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion, Nature (Lond.) 271:672–674.

    Article  CAS  Google Scholar 

  • Cullis, P. R., and Verkleij, A. J., 1979, Modulation of membrane structure by Ca2+and dibucaine as detected by 31P-NMR, Biochim. Biophys. Acta 552:546–551.

    Article  PubMed  CAS  Google Scholar 

  • Day, E. P., Kwok, A. Y. W., Hark, S. K., Ho, J. T., Vail, W. J., Bentz, J., and Nir, S., 1980, Reversibility of sodium-induced aggregation of sonicated phosphatidylserine vesicles. Proc. Natl. Acad. Sci. USA. 77:4026–4029.

    Article  PubMed  CAS  Google Scholar 

  • Düzgüneş, N., 1985, Membrane fusion. Subcell. Biochemistry 11:195–286.

    Google Scholar 

  • Düzgüneş, N., and Hoekstra, D., 1986, Agglutination and fusion of glycolipid-phospholipid vesicles mediated by lectins and calcium ions, Stud. Biophys. 111:5–10.

    Google Scholar 

  • Düzgüneş, N., and Papahadjopoulos, D., 1983, Ionotropic effects on phospholipid membranes: Calcium-magnesium specificity in binding, fluidity, and fusion, in: Membrane Fluidity in BiologyVol. 2: General Principles(R. C. Aloia, ed.), pp. 187–216, Academic Press, New York.

    Google Scholar 

  • Düzgüneş, N., Hong, K., and Papahadjopoulos, D., 1980, Membrane fusion: The involvement of phospholipids, proteins and calcium binding, in: Calcium-Binding Proteins: Structure and Function(F. L. Siegel, E. Carafoli, R. H. Kretsinger, D. H. MacLennan, and R. H. Wasserman, eds.), pp. 17–22, Elsevier/North-Holland, New York.

    Google Scholar 

  • Düzgüneş, N., Nir, S., Wilschut, J., Bentz, J., Newton, C., Portis, A., and Papahadjopoulos, D., 1981a, Calcium- and magnesium-induced fusion of mixed phosphatidylserine/phos-phatidylcholine vesicles: Effect of ion binding, J. Membrane Biol. 59:115–125.

    Article  Google Scholar 

  • Düzgüneş, N., Wilschut, J., Fraley, R., and Papahadjopoulos, D., 1981c, Studies on the mechanism of membrane fusion: Role of head-group composition in calcium- and magnesium-induced fusion of mixed phospholipid vesicles, Biochim. Biophys. Acta 642:182–195.

    Article  PubMed  Google Scholar 

  • Düzgüneş, N., Straubinger, R. M., and Papahadjopoulos, D., 1983, pH-dependent membrane fusion,J. Cell Biol.97:178a.

    Article  Google Scholar 

  • Düzgüneş, N., Paiement, J., Freeman, K. B., Lopez, N. G., Wilschut, J., and Papahadjopoulos, D., 1984a, Modulation of membrane fusion by ionotropic and thermotropic phase transitions. Biochemistry 23:3486–3494.

    Article  PubMed  Google Scholar 

  • Düzgüneş, N., Hoekstra, D., Hong, K., and Papahadjopoulos, D., 1984b, Lectins facilitate calcium-induced fusion of phospholipid vesicles containing glycosphingolipids, FEBS Lett. 173:80–84.

    Article  PubMed  Google Scholar 

  • Düzgüneş, N., Wilschut, J., and Papahadjopoulos, D., 1985a, Control of membrane fusion by divalent cations, phospholipid head-groups and proteins, in: Physical Methods on Biological Membranes and Their Model Systems(F. Conti, W. E. Blumberg, J. DeGier, and F. Pocchiari, eds.), pp. 193–218, Plenum Press, New York.

    Chapter  Google Scholar 

  • Düzgüneş, N., Straubinger, R. M., Baldwin, P. A., Friend, D. S., and Papahadjopoulos, D., 1985c, Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes, Biochemistry 24:3091–3098.

    Article  PubMed  Google Scholar 

  • Eisenberg, M., Gresalfi, T., Riccio, T., and McLaughlin, S., 1979, Adsorption of monovalent cations to bilayer membranes containing negative phospholipids, Biochemistry 18:5213–5223.

    Article  PubMed  CAS  Google Scholar 

  • Ekerdt, R., and Papahadjopoulos, D., 1982, Intermembrane contact affects calcium binding to phospholipid vesicles, Proc. Natl. Acad. Sci. USA. 79:2273–2277.

    Article  PubMed  CAS  Google Scholar 

  • Eliasz, A. W., Chapman, D., and Ewing, D. F., 1976, Phospholipid phase transitions. Effects of n-alcohols, n-monocarboxylic acids, phenylalkyl alcohols and quaternary ammonium compounds, Biochim. Biophys. Acta 448:220–230.

    Article  PubMed  CAS  Google Scholar 

  • Ellens, H., Bentz, J., and Szoka, F. C., 1984, pH-induced destabilization of phosphati-dylethanolamine-containing liposomes. Role of bilayer contact, Biochemistry 23:1532–1538.

    Article  PubMed  CAS  Google Scholar 

  • Ellens, H., Bentz, J., and Szoka, F. C., 1985, H+- and Ca2+-induced fusion and destabilization of liposomes, Biochemistry 24:3099–3106.

    Article  PubMed  CAS  Google Scholar 

  • Ellens, H., Bentz, J., and Szoka, F. C., 1986a, Destabilization of phosphatidylethanolamine liposomes at the hexagonal phase transition temperature, Biochemistry 25:285–294.

    Article  PubMed  CAS  Google Scholar 

  • Ellens, H., Bentz, J., and Szoka, F. C., 1986c, Fusion of phosphatidylethanolamine-contain-ing liposomes and the mechanism of the La-HIIphase transition, Biochemistry,25:4141–4147.

    Article  PubMed  CAS  Google Scholar 

  • Findlay, E. J., and Barton, P. G., 1978, Phase behavior of synthetic phosphatidylglycerols and binary mixtures with phosphatidylcholines in the presence and absence of calcium ions, Biochemistry 17:2400–2405.

    Article  PubMed  CAS  Google Scholar 

  • Gagné, J., Stamatatos, L., Diacovo, T., Hui, S. W., Yeagle, P., and Silvius, J., 1985, Physical properties and surface interactions of bilayer membranes containing N-methylated phosphatidylethanolamines, Biochemistry 24:4400–4408.

    Article  PubMed  Google Scholar 

  • Galla, H. J., and Sackmann, E., 1975, Chemically induced lipid phase separation in model membranes containing charged lipids: A. spin label study, Biochim. Biophys. Acta 401:509–529.

    Article  PubMed  CAS  Google Scholar 

  • Geuze, H. J., Slot, J. W., Strous, G. J. A. M., Lodish, H. F., and Schwartz, A. L., 1983, Intracellular site of asialoglycoprotein receptor-ligand uncoupling: Double label immunoelectrin microscopy during receptor-mediated endocytosis, Cell 32:277–287.

    Article  PubMed  CAS  Google Scholar 

  • Graham, L, Gagné, J., and Silvius, J. R., (1985), Kinetics and thermodynamics of calcium-induced lateral phase separations in phosphatic acid containing bilayers, Biochemistry 24:7123–7131.

    Article  PubMed  CAS  Google Scholar 

  • Gruner, S. M., Cullis, P. R., Hope, M. J., and Tilcock, C. P. S., 1985, Lipid polymorphism. The molecular basis of nonbilayer phases, Annu. Rev. Biophys. Biophys. Chem. 14:211–238.

    Article  PubMed  CAS  Google Scholar 

  • Harlos, K., and Eibl H., 1980, Influence of calcium on phosphatidylethanolamine. An investigation of the structure at high pH, Biochim. Biophys. Acta 601:113–122.

    Article  PubMed  CAS  Google Scholar 

  • Hauser, H., and Shipley, G. G., 1983, Interactions of monovalent cations with phosphatidyl-serine bilayer membranes, Biochemistry 22:2172–2178.

    Google Scholar 

  • Hauser, H., Pascher, I., Pearson, R. H., and Sundell, S., 1981, Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine, Biochim. Biophys. Acta 650:21–51.

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra, D., 1982a, Fluorescence method for measuring the kinetics of Ca2+-induced phase separations in phosphatidylserine-containing lipid vesicles, Biochemistry 21:1055–1061.

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra, D., 1982c, Role of lipid phase separations and membrane hydration in phospholipid vesicle fusion. Biochemistry 21:2833–2840.

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra, D., Düzgüneş, N., and Wilschut, J., 1985, Agglutination and fusion of globoside GL-4 containing phospholipid vesicles mediated by lectins and Ca2+, Biochemistry 24:565–572.

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra, D., and Düzgüneş, N., 1986, Ricinus communisagglutinin-mediated agglutination and fusion of glycolipid-containing phospholipid vesicles. Effect of carbohydrate head group size, calcium ions and spermine, Biochemistry 25:1321–1330.

    Article  PubMed  CAS  Google Scholar 

  • Hong, K., Schuber, F., and Papahadjopoulos, D., 1983, Polyamines: Biological modulators of membrane fusion, Biochim. Biophys. Acta 732:469–472.

    Article  PubMed  CAS  Google Scholar 

  • Hope, M. J., Walker, D. C., and Cullis, P. R., 1983, Calcium and pH-induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: A. freeze-fracture study, Biochem. Biophys. Res. Commun. 110:15–22.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C. C., 1969, Studies on phosphatidylcholine vesicles: Formation and physical characteristics, Biochemistry 8:344–352.

    Article  PubMed  CAS  Google Scholar 

  • Hui, S. W., 1981, Geometry of phase separated domains in phospholipid bilayers by diffraction-contrast electron microscopy, Biophys. J. 34:383–395.

    Article  PubMed  CAS  Google Scholar 

  • Hui, S. W., Stewart, T. P., Boni, L. T., and Yeagle, P. L., 1981, Membrane fusion through point defects in bilayers, Science 212:921–923.

    Article  PubMed  CAS  Google Scholar 

  • Hui, S. W., Boni, L. T., Stewart, T. P., and Isaac, T., 1983, Identification of phosphatidylserine and phosphatidylcholine in calcium-induced phase separated domains, Biochemistry 22:3511–3516.

    Article  CAS  Google Scholar 

  • Ito, T., and Ohnishi, S. 1974, Ca2+-induced lateral phase separations in phosphatide acid- phosphatidylcholine membranes, Biochim. Biophys. Acta 352:29–37.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, K., and Papahadjopoulos, D., 1975, Phase transitions and phase separations in phospholipid membranes induced by changes in temperature, pH and concentration of bivalent cations, Biochemistry 14:152–161.

    Article  PubMed  CAS  Google Scholar 

  • Jendrasiak, G. L., and Hasty, J. H., 1974, The hydration of phospholipids, Biochim. Biophys. Acta 337:79–91.

    Article  PubMed  CAS  Google Scholar 

  • Kolber, M. A., and Haynes, D. H., 1979, Evidence for A. role of phosphatidylethanolamine as a modulator of membrane-membrane contact,J. Membrane Biol. 48:95–114.

    Article  CAS  Google Scholar 

  • Kurland, R., Newton, C., Nir, S., and Papahadjopoulos, D., 1979, Specificity of Na+binding to phosphatidylserine vesicles from A. 23Na+NMR relaxation rate study, Biochim. Biophys. Acta 551:137–147.

    Article  PubMed  CAS  Google Scholar 

  • Lai, M-Z., Vail, W. J., and Szoka, F. C., 1985, Acid- and calcium-induced structural changes in phosphatidylethanolamine membranes stabilized by cholesterol hemisuccinate, Biochemistry 24:1654–1661.

    Article  PubMed  CAS  Google Scholar 

  • Lis, L. J., McAlister, M., Fuller, N., Rand, R. P., and Parsegian, V. A., 1982, Interactions between neutral phospholipid bilayer membranes, Biophys. J. 37:657–666.

    PubMed  CAS  Google Scholar 

  • Loosley-Millman, M. E., Rand, R. P., and Parsegian, V. A., 1982, Effects of monovalent ion binding and screening on measured electrostatic forces between charged phospholipid bilayers, Biophys. J. 40:221–232.

    Article  PubMed  CAS  Google Scholar 

  • Markin, V. S., Kozlov, M. M., and Borovjagin, V. L., 1984, On the theory of membrane fusion. The stalk mechanism, Gen. Physiol. Biophys. 5:361–377.

    Google Scholar 

  • Marsh, M., 1984, The entry of enveloped viruses into cells by endocytosis, Biochem. J.218:1–10.

    PubMed  CAS  Google Scholar 

  • Mayer, L. D., and Nelsestuen, G. L., 1981, Calcium- and prothrombin-induced lateral phase separation in membranes, Biochemistry 20:2457–2463.

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin, S. G. A., Szabo, G., and Eisenman, G., Divalent ions and the surface potential of charged phospholipid membranes,J. Gen. Physiol. 58:667–687.

    Google Scholar 

  • Mclver, D. J. L., 1970, Control of membrane fusion by interfacial water: A. model for the action of divalent cations, Physiol Chem. Phys. 11:289–302.

    Google Scholar 

  • McLaughlin, S., Mulrine, N., Gresalfi, T., Vaio, G., and McLaughlin, A., 1981, The adsorption of divalent cations to bilayer membranes containing phosphatidylserine, J. Gen. Physiol 77:445–473.

    Article  PubMed  CAS  Google Scholar 

  • Meers, P., Hong, K., Bentz, J., and Papahadjopoulos, D., 1986, Spermine as A. modulator of membrane fusion: Interaction with acidic phospholipids, Biochemistry 25:3109–3118.

    Article  PubMed  CAS  Google Scholar 

  • Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys.Acta 415:81–147.

    Article  PubMed  CAS  Google Scholar 

  • Michell, R. H., Kirk, C. J., Jones, L. M., Downes, C. P., and Creba, J. A., 1981, The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: Defined characteristics and unanswered questions, Philos. Trans. R. Soc. Lond. B. 296:123–137.

    Article  CAS  Google Scholar 

  • Miller, D. C., and Dahl, G. P., 1982, Early events in calcium-induced liposome fusion, Biochim. Biophys. Acta 689:165–169.

    Article  PubMed  CAS  Google Scholar 

  • Newton, C., Pangborn, W., Nir, S., and Papahadjopoulos, D., 1978, Specificity of Ca2+and Mg2+binding to phosphatidylserine vesicles and resultant phase changes of bilayer membrane structure, Biochim. Biophys. Acta 506:281–287.

    Article  PubMed  CAS  Google Scholar 

  • Nir, S., 1984, A. model for cation adsorption in closed systems: Application to calcium binding to phospholipid vesicles,J. Colloid Interface Sci. 102:313–321.

    Article  CAS  Google Scholar 

  • Nir, S., and Bentz, J., 1978, On the forces between phospholipid bilayers,J. Colloid Interface Sci. 65:399–414.

    Article  CAS  Google Scholar 

  • Nir, S., Newton, C., and Papahadjopoulos, D., 1978, Binding of cations to phosphatidylserine vesicles, Bioelectrochem. Bioenerg. 5:116–133.

    Article  CAS  Google Scholar 

  • Nir, S., Bentz, J., and Wilschut, J., 1980a, Mass action kinetics of phosphatidylserine vesicle fusion as monitored by coalescence of internal vesicle volumes, Biochemistry 19:6030–6036.

    Article  PubMed  CAS  Google Scholar 

  • Nir, S., Bentz, J., and Portis, A. R. Jr., 1980b, Effect of cation concentrations and temperature on the rates of aggregation of acidic phospholipid vesicles. Application to fusion, Adv. Chem. Ser. 188:75–106.

    Article  CAS  Google Scholar 

  • Nir, S., Bentz, J., and Düzgüneş, N., 1981, Two modes of reversible vesicle aggregation: Particle size and the DLVO theory, J. Colloid Interface Sci. 84:266–269.

    Article  CAS  Google Scholar 

  • Nir, S., Wilschut, J., and Bentz, J., 1982, The rate of fusion of phospholipid vesicles and the role of bilayer curvature, Biochim. Biophys. Acta 688:275–278.

    Article  PubMed  CAS  Google Scholar 

  • Nir, S., Bentz, J., Wilschut, J., and Düzgüneş, N., 1983a, Aggregation and fusion of phospholipid vesicles, Prog. Surface Sci. 13:1–124.

    Article  CAS  Google Scholar 

  • Nir, S., Düzgüneş, N., and Bentz, J., 1983b, Binding of monovalent cations to phosphatidyl-serine and modulation of Ca2+- and Mg2+-induced vesicle fusion, Biochim. Biophys. Acta 735:160–172.

    Article  PubMed  CAS  Google Scholar 

  • Ohki, S., 1982, A. mechanism of divalent-ion induced phosphatidylserine membrane fusion, Biochim. Biophys. Acta 689:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Ohki, S., and Düzgüneş, N., 1979, Divalent cation induced interaction of phospholipid vesicle and monolayer membranes, Biochim. Biophys. Acta 552:438–449.

    Article  PubMed  CAS  Google Scholar 

  • Ohki, S., Düzgüneş, N., and Leonards, K., 1982, Phospholipid vesicle aggregation: Effect of monovalent and divalent ions, Biochemistry 21:2127–2133.

    Article  PubMed  CAS  Google Scholar 

  • Ohki, S., Roy, S., Ohshima, H., and Leonards, K., 1984, Monovalent cation-induced phospholipid vesicle aggregation: Effect of ion binding, Biochemistry 23:6126–6132.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, S. I. and Ito, T., 1974, Calcium-induced phase separations in phosphatidylserine-phosphatidylcholine membranes, Biochemistry 13:881–887.

    Article  CAS  Google Scholar 

  • Ohnishi, S. I., and Tokutomi, S., 1981, ESR studies of calcium- and proton-induced phase separations in phosphatidylserine-phosphatidylcholine mixed membranes, in: Biological Magnetic Resonance, Vol. 3 (L. J. Berliner and J. Reuben, eds.), pp. 121–153, Plenum Press, New York.

    Google Scholar 

  • Ornberg, R. L., and Reese, T. S., 1981, Beginning of exocytosis captured by rapid-freezing of Limulusamebocytes, J. Cell Biol. 90:40–54.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., 1968, Surface properties of acidic phospholipids: Interaction of monolayers and hydrated liquid crystals with uni- and bivalent metal ions, Biochim. Biophys. Acta 163:240–254.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., 1973, Phospholipid membranes as experimental models for biological membranes, in: Biological Horizons in Surface Science(L. M. Prince and D. F. Sears, eds.), pp. 159–225, Academic Press, New York.

    Google Scholar 

  • Papahadjopoulos, D., 1978, Calcium-induced phase changes and fusion in natural and model membranes, in: Membrane Fusion(G. Poste and G. L. Nicolson, eds.), pp. 765–790, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Papahadjopoulos, D., and Watkins, J. C., 1967, phospholipid model membranes. II. Permeability properties of hydrated liquid crystals, Biochim. Biophys. Acta 135:630–652.

    Google Scholar 

  • Papahadjopoulos, D., Poste, G., Schaeffer, B. E., and Vail, W. J., 1974, Membrane fusion and molecular segregation in phospholipid vesicles, Biochim. Biophys. Acta 352:10–28.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Vail, W. J., Pangborn, W. A., and Poste, G., 1976, Studies on membrane fusion. II. Induction of fusion in pure phospholipid membranes by calcium and other divalent metals, Biochim. Biophys. Acta 448:265–283.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Vail, W. J., Newton, C., Nir, S., Jacobson, K., Poste, G., and Lazo, R., 1977, Studies on membrane fusion. III. The role of calcium-induced phase changes, Biochim. Biophys. Acta 465:579–598.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Portis, A., and Pangborn, W., 1978a, Calcium-induced lipid phase transitions and membrane fusion. Ann. N.Y. Acad. Sci. 308:50–66.

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Portis, A., Pangborn, W., and Newton, C., 1978b, Fusion of artificial membranes with special emphasis on the role of calcium-induced lipid phase transitions, in: Transport of Macromolecules in Cellular Systems(S. C. Silverstein, ed.), pp. 413–430, Dahlem Konferenzen, Berlin.

    Google Scholar 

  • Papahadjopoulos, D., Poste, G., and Vail, W. J., 1979, Studies on membrane fusion with natural and model membranes, Methods Membrane Biol. 10:1–121.

    Article  CAS  Google Scholar 

  • Portis, A., Newton, C., Pangborn, W., and Papahadjopoulos, D., 1979, Studies on the mechanism of membrane fusion: Evidence for an intermembrane Ca2+-phospho-lipid complex, synergism with Mg2+, and inhibition by spectrin, Biochemistry 18: 780–790.

    Article  PubMed  CAS  Google Scholar 

  • Puskin, J., 1977, Divalent cation binding to phospholipids: An EPR study, J. Membrane Biol. 35:39–55.

    Article  CAS  Google Scholar 

  • Recktenwald, D. J., and McConnell, H., 1981, Phase equilibria in binary mixtures of phosphatidylcholine and cholesterol, Biochemistry 20:4505–4510.

    Article  PubMed  CAS  Google Scholar 

  • Rehfeld, S. J., Düzgüneş, N., Newton, C., Papahadjopoulos, D., and Eatough, D. J., The exothermic reaction of calcium with unilamellar phosphatidylserine vesicles: Titration microcalorimetry, FEBS Lett. 123:249–251.

    Google Scholar 

  • Rosenberg, J., Düzgüneş, N., and Kayalar, C., 1983, Comparison of two liposome fusion assays monitoring the intermixing of aqueous contents and of membrane components, Biochim. Biophys. Acta 735:173–180.

    Article  PubMed  CAS  Google Scholar 

  • Scherphof, G. L., 1983, A. matter of pronunciation, in: Liposome Letters(A. D. Bangham, ed.), pp. 319–321, Academic Press, London.

    Google Scholar 

  • Schuber, F., Hong, K., Düzgüneş, N., and Papahadjopoulos, D., 1983, Polyamines as modulators of membrane fusion: Aggregation and fusion of liposomes, Biochemistry 22: 6134–6140.

    Article  PubMed  CAS  Google Scholar 

  • Schullery, S. E., Seder, T. A., Weinstein, D. A., and Bryant, D. A., 1981, Differential thermal analysis of dipalmitoylphosphatidylcholine-fatty acid mixtures, Biochemistry 20:6818–6824.

    Article  PubMed  CAS  Google Scholar 

  • Shimshick, E. J., and McConnell, H. M., 1973, Lateral phase separation in phospholipid membranes, Biochemistry 12:2351–2359.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, D. P., 1984, Inverted micellar structures in bilayer membranes: Formation rates and half-lives, Biophys. J. 45:399–420.

    Article  PubMed  CAS  Google Scholar 

  • Silvius, J. R., and Gagné, J., 1984a, Calcium-induced fusion and lateral phase separations in phosphatidylcholine-phosphatidylserine vesicles. Correlation by calorimetric and fusion measurements, Biochemistry 23:3241–3247.

    Article  CAS  Google Scholar 

  • Silvius, J. R., and Gagné, J., 1984b, Lipid phase behavior and calcium-induced fusion of phosphatidylethanolamine-phosphatidylserine vesicles. Calorimetric and fusion studies, Biochemistry 23:3232–3240.

    Article  CAS  Google Scholar 

  • Stewart, T. P., Hui, S. W., Portis, A. R., Jr., and Papahadjopoulos, D., 1979, Complex phase mixing of phosphatidylcholine and phosphatidylserine in multilamellar membrane vesicles, Biochim. Biophys. Acta 556:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Straubinger, R. M., Hong, K., Friend, D. S., and Papahadjopoulos, D., 1983a, Endocytosis of liposomes and intracellular fate of encapsulated molecules: Encounter with A. low pH compartment after internalization in coated vesicles, Cell 32:1069–1079.

    Article  PubMed  CAS  Google Scholar 

  • Straubinger, R. M., Düzgüneş, N., and Papahadjopoulos, D., 1983b, pH-sensitive liposomes: Enhanced cytoplasmic delivery of encapsulated macromolecules, J. Cell Biol.97:109a.

    Google Scholar 

  • Straubinger, R. M., Hong, K., Friend, D. S., Düzgüneş, N., and Papahadjopoulos, D., 1985a, Endoctyosis of liposomes and intracellular fate of encapsulated molecules: Strategies for enhanced cytoplasmic delivery, in: Receptor-Mediated Targeting of Drugs(G. Greg-oriadis, G. Poste, J. Senior, and A. Trouet, eds.), pp. 297–315, Plenum Press, New York.

    Google Scholar 

  • Straubinger, R. M., Düzgüneş, N., and Papahadjopoulos, D., 1985b, pH-sensitive liposomes mediate cytoplasmic delivery of encapsulated macromolecules, FEBS Lett. 179:148–154.

    Article  PubMed  CAS  Google Scholar 

  • Strehlow, V., and Jähnig, F., 1981, Electrostatic interactions at charged lipid membranes. Kinetics of the electrostatically triggered phase transition, Biochim. Biophys. Acta 641:301–310.

    Article  PubMed  CAS  Google Scholar 

  • Struck, D. K., Hoekstra, D., and Pagano, R. E., 1981, Use of resonance energy transfer to monitor fusion, Biochemistry 20:4093–4099.

    Article  PubMed  CAS  Google Scholar 

  • Sundler, R., 1984, Role of phospholipid head group structure and polarity in the control of membrane fusion, Biomembranes 12:563–583.

    CAS  Google Scholar 

  • Sundler, R., and Wijkander, J., 1983, Protein-mediated intermembrane contact specifically enhances Ca2+-induced fusion of phosphatidate-containing membranes, Biochim. Biophys. Acta 730:391–394.

    Article  PubMed  CAS  Google Scholar 

  • Sundler, R., Düzgüneş, N., and Papahadjopoulos, D., 1981, Control of membrane fusion by phospholipid head groups. II. The role of phosphatidylethanolamine in mixtures with phosphatidate and phosphatidylinositol, Biochim. Biophys. Acta 649:751–758.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, Y., and Nikaido, H., 1981, Persistence of segregated phospholipid domains in phospholipid lipopolysaccharide mixed bilayers: Studies with spin-labeled phospholipids, Biochemistry 20:523–529.

    Article  PubMed  CAS  Google Scholar 

  • Tilcock, C. P. S., and Cullis, P. R., 1981, The polymorphic phase behavior of mixed phosphatidylserine-phosphatidylethanolamine model systems as detected by 31P-NMR: Effects of divalent cations and pH, Biochim. Biophys. Acta 641:189–210.

    Article  PubMed  CAS  Google Scholar 

  • Tokutomi, S., Lew, R., and Ohnishi, S. I., 1981, Ca2+-induced phase separation in phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine mixed membranes, Biochim. Biophys. Acta 643:276–282.

    Article  PubMed  CAS  Google Scholar 

  • Träuble, H., and Eibl, H., 1974, Electrostatic effects on lipid phase transitions: Membrane structure and ionic environment, Proc. Natl. Acad. Sci. USA. 71:214–219.

    Article  PubMed  Google Scholar 

  • Usher, J. R., Epand, R. M., and Papahadjopoulos, D., 1978, The effect of free fatty acids on the thermotropic phase transition of dimyristoyl glycerophosphocholine, Chem. Phys. Lipids 22:245–253.

    Article  PubMed  CAS  Google Scholar 

  • Verkleij, A. J., 1984, Lipidic intramembranous particles, Biochim. Biophys. Acta 779:43–63.

    Article  PubMed  CAS  Google Scholar 

  • Verkleij, A. J., Mombers, C., Gerritsen, W. J., Leunissen-Bijvelt, L., and Cullis, P. R., 1979, Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized by freeze-fracturing, Biochim. Biophys. Acta 555:358–361.

    Article  PubMed  CAS  Google Scholar 

  • Verkleij, A. J., van Echteld, C. J. A., Gerritsen, W. J., Cullis, P. R., and de Kruijff, B., 1980, The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonal HIItransitions, Biochim. Biophys. Acta 600:620–624.

    Article  PubMed  CAS  Google Scholar 

  • Verkleij, A. J., Leunissen-Bijvelt, J., de Kruijff, B, Hope, M., and Cullis, P. R., 1984, Non-bilayer structures in membrane fusion, in: Cell Fusion, Ciba Foundation Symposium 103, pp. 45–59, Pitman Books, London.

    Google Scholar 

  • Wilschut, J., Düzgüneş, N., Fraley, R., and Papahadjopoulos, D., 1980, Studies on the mechanism of membrane fusion: Kinetics of Ca2+-induced fusion of phosphatidyl-serine vesicles followed by A. new assay for mixing of aqueous vesicle contents, Biochemistry 19:6011–6021.

    Article  PubMed  CAS  Google Scholar 

  • Wilschut, J., Düzgüneş, N., and Papahadjopoulos, D., 1981, Calcium/magnesium specificity in membrane fusion: Kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature, Biochemistry 20:3126–3133.

    Article  PubMed  CAS  Google Scholar 

  • Wilschut, J., Düzgüneş, N., Hoekstra, D., and Papahadjopoulos, D., 1985, Modulation of membrane fusion by membrane fluidity: Temperature dependence of divalent cation-induced fusion of phosphatidylserine vesicles, Biochemistry 24:8–14.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura, T., and Aki, K., 1985, Sodium-induced aggregation of phosphatidc acid and mixed phospholipid vesicles, Biochim. Biophys. Acta 815:167–1732.

    Google Scholar 

  • Yoshimura, A., Kuroda, K., Kawasaki, K., Yamashina, S., Maeda, T., and Ohnishi, S. I., 1982, Infectious cell entry mechanism of influenza virus,J. Virol. 43:284–293.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Düzgüneş, N., Hong, K., Baldwin, P.A., Bentz, J., Nir, S., Papahadjopoulos, D. (1987). Fusion of Phospholipid Vesicles Induced by Divalent Cations and Protons. In: Sowers, A.E. (eds) Cell Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9598-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9598-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9600-1

  • Online ISBN: 978-1-4757-9598-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics