Skip to main content

Shielding Design and Dose Assessment for an Accelerator-Based BNCT Facility

  • Chapter
Book cover Cancer Neutron Capture Therapy
  • 29 Accesses

Abstract

Preparations are ongoing to test the viability and usefulness of an accelerator source of epithermal neutrons for ultimate use in a clinical environment. This feasibility study is to be conducted in a shielded room located on the Massachusetts Institute of Technology (MIT) campus and will not involve patient irradiations. The accelerator production of neutrons is based on the 7Li(p,n)7Be reaction. A maximum proton beam current of 4 mA at an energy of 2.5 MeV is anticipated. The resultant 3.58 × 1012 neutrons sec−1 have a maximum energy of 800 keV and will be substantially moderated. This paper describes the Monte Carlo methods used to estimate the neutron and photon dose rates in a variety of locations in the vicinity of the accelerator, as well as the shielding configuration required when the device is run at maximum current. Results indicate that the highest absorbed dose rate to which any individual will be exposed is 3 μSv hr−1 (0.3 mrem hr−1). The highest possible yearly dose is 0.2 μSv (2 × 10−2 mrem) to the general public or 0.9 mSv (90 mrem) to a radiation worker in close proximity to the accelerator facility. The shielding necessary to achieve these dose levels is also discussed. The shielding design has been completed and installation of the accelerator has begun.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, C.; Blue, T. E.; Gahbauer, R. A Neutronic study of an accelerator-based neutron irradiation facility for boron neutron capture therapy. Nucl. Tech. 84: 93–107; 1989.

    CAS  Google Scholar 

  2. Crawford, J.F.; Reist, H.; Conde, H.; Elmgren, K.; Ronnqvist, T.; Grusell, E.; Nilsson, B.; Pettersson, O.; Stromberg, P.; Larsson, B. Neutrons for capture therapy produced by 72 MeV protons. In: Progress in neutron capture therapy for cancer, proceedings of the fourth international symposium on boron neutron capture therapy. New York: Plenum Press; 1992.

    Google Scholar 

  3. Blue, T. E.; Qu, T-X, B.; Christensen, R. N.; Guo, P.; Blue, J. W. An integrated neutronic and thermal-hydraulic design study for an accelerator neutron irradiation facility. In: Progress in neutron capture therapy for cancer, proceedings of the fourth international symposium on boron neutron capture therapy. New York: Plenum Press; 1992.

    Google Scholar 

  4. Wang, C.; Eggers, P.E.; Crawford, H.L. Accelerator neutron irradiation facility for hospital-based neutron capture therapy. In: Advances in neutron captpure therapy, proceedings of the fifth international symposium on neutron capture therapy. New York: Plenum Press; 1993.

    Google Scholar 

  5. Shefer, R.E.; Klinkowstein, R.E.; Yanch J.C.; Brownell G.L. An epithermal neutron source for BNCT using a tandem cascade accelerator. In: Progress in neutron capture therapy for cancer, proceedings of the fourth international symposium on boron neutron capture therapy. New York: Plenum Press; 1992.

    Google Scholar 

  6. Wang, C.; Moore, B. R. On the study of energy spectra and angular distributions of the neutrons emitted from a beryllium target bombarded with 4-MeV protons for neutron capture therapy. In: Advances in neutron captpure therapy, proceedings of the fifth international symposium on neutron capture therapy. New York: Plenum Press; 1993.

    Google Scholar 

  7. Yanch, J.C.; Shefer, R.E.; Hughey, B.J.; Klinkowstein, R.E. Accelerator-based epithermal neutron beams for neutron capture therapy. In: Advances in neutron captpure therapy, proceedings of the fifth international symposium on neutron capture therapy. New York: Plenum Press; 1993.

    Google Scholar 

  8. Yanch, J.C.; Zhou, X-L.; Shefer, R.E.; Klinkowstein, R.E. Accelerator-based epithermal neutron beam design for neutron capture therapy. Med. Phys. 19: 709–721; 1992.

    Article  PubMed  CAS  Google Scholar 

  9. Liskien, H; Paulson, A. Neutron production cross sections and energies for the reactions’Li(p,n)7Be and ?Li(p,n)7Be*. Atomic Data Nucl. Tables 15: 57; 1975

    Article  CAS  Google Scholar 

  10. Halbleib, J. A.; Kensek, R. P.; Mehlhorn, T. A.; Valdez, G. D.; Seltzer, S. M.; Berger, M. J. ITS Version 3.0: The integrated TIGER series of coupled electron photon monte carlo transport codes. SAND91–1634; 1992.

    Google Scholar 

  11. Hughey, B. Science Research Laboratory, Somerville, MA. Personal communication, 25 August, 1993.

    Google Scholar 

  12. Brooks, R.; DiChiro, G.; Keller, M.R. Explanation of cerebral white-gray contrast in computed tomography. J. Comp. Asst. Tomog. 4 (4): 489–491; 1980.

    Article  CAS  Google Scholar 

  13. Caswell, R. S.; Coyne, J. J.; Randolph, M. L. Kerma factors of elements and compounds for neutron energies below 30 Mev. Int. J. Appl. Radiat. lsot. 33: 1227–1262; 1982.

    CAS  Google Scholar 

  14. Zamenhof, R. G.; Murray, B. W.; Brownell, G. L.; Wellum, G. R.; Tolpin, E. I. Boron neutron capture therapy for the treatment of cerebral gliomas. 1: Theoretical evaluation of the efficacy of various neutron beams. Med. Phys. 2: 47–60; 1975.

    Article  PubMed  CAS  Google Scholar 

  15. Briesmeister, J.F. MCNP-A general Monte Carlo N-particle transport code, Version 4A. LA-12625; 1988.

    Google Scholar 

  16. Walen, D.J.; Hollowell, D.E.; Hendricks, J.S. MCNP: Photon benchmark tests. LA-12196; 1991.

    Google Scholar 

  17. Walen, D.J.; Cardon, D.A.; Uhle, J.L.; Hendricks, J.S. MCNP: Neutron benchmark tests. LA-12212; 1991.

    Google Scholar 

  18. Commonwealth of Massachusetts. Code of Massachusetts Regulations. 105 CMR 120.000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Howard, W.B., Yanch, J.C. (1996). Shielding Design and Dose Assessment for an Accelerator-Based BNCT Facility. In: Mishima, Y. (eds) Cancer Neutron Capture Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9567-7_62

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9567-7_62

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9569-1

  • Online ISBN: 978-1-4757-9567-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics