Skip to main content

The Plasma Membrane Calcium Pump

  • Chapter
Calcium and Cellular Metabolism

Abstract

The plasma membrane Ca2+ ATPase has been first described in erythrocytes by Schatzmann (1966) and is now known to be present in all cells of higher eucaryotes. The pump belongs to the family of P-type ATPases (Pedersen & Carafoli, 1987a; Pedersen & Carafoli, 1987b), i.e., it forms an aspartyl-phosphate during the reaction cycle. It is a target of calmodulin (Gopinath & Vincenzi, 1977; Jarret & Penniston, 1977), which increases its affinity for Ca2+ by one order of magnitude, to a Kd of about 0.5 µM. The pump, however, can also be activated by a number of alternative treatments: the exposure to acidic phospholipids (Ronner et al., 1977; Niggli et al., 1981a), a controlled proteolytic treatment (Enyedi et al., 1980; Caroni & Carafoli, 1981), phosphorylations by two protein kinases, (protein kinase A (PKA) (Caroni & Carafoli, 1981) and protein kinase C (PKC) (Wright et al., 1993; Furukawa et al., 1989)), and an oligomerization process (Kosk-Kosicka & Bzdega, 1988). By general consensus, calmodulin is considered the natural modulator of the pump, but it is well to remember that the pump in the membrane is surrounded by amounts of acidic phospholipids which are, in principle, sufficient for half-maximal activation (Niggli et al., 1981b). The interaction with calmodulin has been exploited to purify the pump using calmodulin columns (Niggli et al., 1981 b). The purified enzyme is active, and can be reconstituted in liposomes with optimal Ca2+ transport efficiency (Niggli, et al., 1981c): at variance with the Ca2+ pump of sarcoplasmic reticulum, whose Ca2+/ATP molar transport stoichiometry is 2.0, the pump transports only one Ca2+ per ATP hydrolyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balls, R., Gallo R., and Kingsbury, A. (1988). Effect of depolarization on the maturation of cerebellar granule cells in culture. Dev. Brain Res. 40, 269–276.

    Google Scholar 

  • Brodin, P., Falchetto, R., Vorherr, T., and Carafoli, E. (1992) identification of two domains which mediate the binding of activating phospholipids to the plasma membrane Cat’ pump. Eur. J. Biochem. 204: 939–946. Carafoli, E., (199Ia) The calcium pump of the plasma membrane. Physiol Rev. 71: I29–153.

    Google Scholar 

  • Carafoli, E., (1991b) The calcium pump of the plasma membrane. J. Biol. Chem. 267: 2115–2118.

    Google Scholar 

  • Carafoli, E., (1994) Plasma membrane calcium ATPase: 15 years of work on the purified enzyme. FASEB J. 8: 993–1007.

    PubMed  CAS  Google Scholar 

  • Carafoli, E., and Guerini, D. (1993). Molecular and cellular biology of plasma membrane Ca“’ ATPase. Trends in Cardiovasc. Med. 3: 177–184.

    Google Scholar 

  • Carafoli, E., Garcia-Martin, E., and Guerini, D., (1996) The plasma membrane calcium pump: recent develop¬ments and future perspectives. Experientia 52: 1091–1100.

    Article  PubMed  CAS  Google Scholar 

  • Caroni, P., and Carafoli, E. (1981). Regulation of Ca“ pumping ATPase of heart sarcolemma by a phosphoryla-tion/dephosphorylation process. J. Biol. Chem. 256: 9371–9373..

    Google Scholar 

  • Clarke, D.M., Loo, T.W., Inesi, G., and Mac Lennan, D.H., (1989). Location of the affinitiy Ca’’-binding sites within the predicted transmembrane domain of the sarcoplasmic reticulum Ca“-ATPase. Nature 239: 476–478.

    Article  Google Scholar 

  • Enyedi, A., Sarkadi, B., Szasz, I., Bot, B., and Gardos, G. (1980). Molecular properties of the red cell calcium pump. H. Effects of proteolysis, proteolytic digestion and drugs on the calcium-induced phosphorylation by ATP in inside/out red cell membrane vesicles. Cell Calcium 1: 299–310.

    Google Scholar 

  • Falchetto, R., Vorherr, T., Brunner, J., and Carafoli, E. (1991). The plasma membrane Ca“ pump contains a site that interacts with its calmodulin-binding domain. J. Biol. Chem. 266: 2930–2936.

    Google Scholar 

  • Falchetto, R., Vorherr, T., and Carafoli, E. (1992). The calmodulin-binding site of the plasma membrane Ca“ pump interacts with the transduction domain of the enzyme. Protein. Sci. 1: 1613–1621.

    Google Scholar 

  • Foletti, D., Guerini, D., and Carafoli, E. (1995). Subcellular targeting of the endoplasmic reticulum and plasma membrane Ca“ pumps: a study using recombinant chimeras. FASEB J. 9: 670–680.

    PubMed  CAS  Google Scholar 

  • Furukawa, K.l., Tawada, Y., and Shigekawa, M. (1989). Protein kinase C activation stimulates plasma membrane Ca`’ pump in cultured vascular smooth muscle cells. J. Biol. Chem. 264: 4844–4849.

    Google Scholar 

  • Gallo, V., Kingsbury, A., Balàs, R., and Jorgensen, O.S. (1987). The role of depolarization in the survival and dif-ferentiation of cerebellar granule cells in culture. J. Neurosci. 7, 2203–2213.

    PubMed  CAS  Google Scholar 

  • Gopinath, and Vincenzi, F. (1977). Phosphodiesterase protein activator mimics red blood cell cytoplasmatic acti¬vator of the (Ca“ + Mg’) ATPase. Biochem. Biophys. Res. Commun. 77: 1203–1209.

    Google Scholar 

  • Guerini, D., Foletti, D., Vellani, F., and Carafoli, E. (1996) Mutation of conserved residues in transmembrane do¬mains 4, 6, and 8 causes loss of Ca“ transport by the plasma membrane Ca2+ pump. Biochemistry 35: 3290–3296.

    CAS  Google Scholar 

  • Heim, R., Iwata, T., Zvaritch, E., Adamo, H.P., Rütishauser, B., Strehler, E.E., Guerini, D., and Carafoli, E. (1992). Expression, purification and properties of the plasma membrane Ca“ pump and of its N-terminally trun¬cated 105-kDa fragment. J. Biol. Chem. 267: 24476–24484.

    Google Scholar 

  • Hilfiker, FI., Guerini, D., and Carafoli, E. (1994). Cloning and expression of isoform 2 of the human plasma mem¬brane Ca“ ATPase. J. Biol Chem. 268: 19717–19725.

    Google Scholar 

  • Hofmann, F., James, P., Vorherr, T., and Carafoli, E. (1993) The C- terminal domain of the plasma membrane Ca2+ pump contains 3 high affinity Ca“ binding sites. J. Biol. Chem. 268: 10252–10259.

    Google Scholar 

  • James, R, Vorherr, T., Krebs, J., Morelli, A., Castello, G., Mc Cormick, D.J., De Flora, A., and Carafoli, E. (1989). Modulation of erythrocyte Ca“ ATPase by selective calpain cleavage of the calmodulin binding domain. J. Biol. Chem. 264: 8289–8296.

    Google Scholar 

  • Jarrett, H.W., and Penniston J.T. (1977). Partial purification of the (Ca2+ + Mg“ -ATPase activator from human erythrocytes: its similarity to the activator of 3’-5’ cyclic nucleotide phosphodiesterase. Biochem. Biophys. Res. Commun. 77: 1210–1216.

    Google Scholar 

  • Keeton, T. P., Burk, S.E., and Shull, G.E (1993). Alternative splicing of exons encoding the calmodulin-binding domains and C-termini of plasma membrane Ca“-ATPase isoforms I. 2, 3 and 4. J.Biol.Chem. 268, 2740–2748.

    CAS  Google Scholar 

  • Kosk-Kosicka, D., and Bzdega, T. (1988). Activation of the erythrocyte Ca“-ATPase either by self-association or interaction with calmodulin. J. Biol. Chem. 263: 22–27.

    Google Scholar 

  • Machamer, C.E. (1993) Targeting and retention of Golgi membrane proteins. Curr. Opin. Cell Biol. 5:606–617. Monteith, G.R., and Roufogalis, B.D. (1995) The plasma membrane calcium pump–a physiological perspective on its regulation. Cell Calcium 18: 459–476.

    Google Scholar 

  • Niggli, V., Adunyah, E.S., and Carafoli, E. (1981a). Acidic phospholipids, unsaturated fatty acids, and limited pro¬teolysis mimic the effect of calmodulin on the purified erythrocyte Ca“-ATPase. J. Biol. Chem. 256: 8588–8592.

    Google Scholar 

  • Niggli, V., Adunyah, E.S., Penniston, J.T., and Carafoli, E. (1981b). Purified (Ca“ + Mg`’)-ATPase of the erythrocyte membrane: reconstitution and effect of calmodulin and phospholipids. J. Biol. Chem. 256: 395–401. Niggli, V., Adunyah, E.S., Penniston, J.T., and Carafoli, E. (1981c). Purification of the (Ca`’ + Mg”)-ATPase from

    Google Scholar 

  • human erythrocyte membranes using a calmodulin affinity column. J. Biol. Chem. 254: 9955–9958. Pedersen, P.L., and Carafoli. E. (1987a). Ion motive ATPases I: ubiquity, properties, and significance to cell function. Trends Biochem. Sci. 12: 146–150.

    Google Scholar 

  • Pedersen, P.L., and Carafoli, E. (1987b). Ion motive ATPases H: energy-coupling and work output. Trends Bio¬chem. Sci. 12: 186–189.

    Google Scholar 

  • Penniston, J.T., and Enyedi, A. (1994) Plasma membrane Ca2+ pump: recent developments. Cell Physiol. and Bio¬chem. 4: 148–159.

    Article  CAS  Google Scholar 

  • Rega, A.F., and Garrahan, P.J. (1986) The Ca’-’ pump of plasma membranes, CRC Press. Inc., Boca Raton. FL, USA.

    Google Scholar 

  • Ronner, P., Gazzotti, P., and Carafoli, E. (1977). A lipid requirement for the (Ca“ Mg”)-activated ATPase oferyth¬rocyte membranes. Arch. Biochem. Biophys. 179: 578–583.

    Google Scholar 

  • Schatzmann, H.J. (1982). The calcium pump of erythrocytes and other animal cells. in Membrane Transport of Calcium, edited by E. Carafoli. Academic Press, London: 41–108.

    Google Scholar 

  • Schatzmann, H.J. (1996). ATP-dependent Ca’’ extrusion from human red cells. Experientia, 22: 364–368.

    Article  Google Scholar 

  • Stauffer, T. P., Hilfiker, H., Carafoli, E., and Strehler, E.E. (1993). Quantitative analysis of alternative splicing options for human plasma membrane calcium pump genes. J. Biol. Chem. 268: 25993–26003.

    Google Scholar 

  • Stauffer, T., Guerini, D., and Carafoli E. (1995). Tissue distribution of the four gene products of the plasma membrane Ca“ pump. J.Biol.Chem. 270, 12184–12190.

    Article  PubMed  CAS  Google Scholar 

  • Wright, L.C., Chen, S., and Roufogalis, B.D. (1993). Regulation of the activity and phosphorylation of the plasma membrane Ca“ATPase by protein kinase C in intact human erythrocytes. Arch. Biochem. Biophys. 306, 277–284.

    Google Scholar 

  • Zvaritch, E., Vellani F., Guerini, D., and Carafoli, E. (1995). A signal for endoplasmic reticulum retention located at the carboxyl terminus of the plasma membrane Ca“-ATPase isoform 4CI. J.Biol. Chem. 270: 2679–2688.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carafoli, E., Guerini, D. (1997). The Plasma Membrane Calcium Pump. In: Sotelo, J.R., Benech, J.C. (eds) Calcium and Cellular Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9555-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9555-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9557-8

  • Online ISBN: 978-1-4757-9555-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics