Skip to main content

Volume-Optimal Inner and Outer Ellipsoids

  • Chapter

Abstract

Approximating a complex set K by a simple geometrical form (such as a polytope, an orthotope, a sphere or an ellipsoid) is often of practical interest. Consider for instance the situation where a vector u has to be chosen so as to satisfy the property

$$ p\left( {u,x} \right) \in T,\forall x \in S, $$
((8.1))

where x and p(.,.) are vector-valued and where T and S are given sets. This can be of interest for instance in robust control, where the controller characterized by u must be designed in order to guarantee some given performances—at least stability—corresponding to a target set T for the process under study, given the information that the model parameters x lie in some specified feasible domain S. The information about S can be derived using the parameter bounding methodology, where one assumes that observations with bounded errors are performed on the process.(1)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Walter, editor. Mathematics and Computers in Simulation 32(5,6) (1990).

    Google Scholar 

  2. L. Pronzato and E. Walter, Int. J. Adapt. Control Sig. Proc. 8, 15 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Wahlberg and L. Ljung, IEEE Trans. Autom. Control AC-37, 900 (1992).

    Article  MathSciNet  Google Scholar 

  4. B. W. Silverman and D. M. Titterington, SIAM J. Sci. Stat. Comput. 1, 401 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  5. D. M. Titterington, J. Royal Stat. Soc. C27(3), 227 (1978).

    MathSciNet  Google Scholar 

  6. L. Davies, An. Stat. 20, 1828 (1992).

    Article  MATH  Google Scholar 

  7. R. D. Cook, D. M. Hawkins, and S. Weisberg, Stat. Prob. Lett. 16, 213 (1993).

    Article  MathSciNet  Google Scholar 

  8. E. M. T. Hendrix, C. J. Mecking, and T. H. B. Hendriks, A Mathematical Formulation of Finding Robust Solutions for a Product Design Problem, Technical Report 93-02, Wageningen Agricultural University, Department of Mathematics, 6703HA Wageningen, The Netherlands (1993).

    Google Scholar 

  9. S. P. Tarasov, L.G. Khachiyan, and I.I. Erlich, Sov. Math. Dokl. 37, 226 (1988).

    MATH  Google Scholar 

  10. L. G. Khachiyan and M. J. Todd, On the Complexity of Approximating the Maximal Inscribed Ellipsoid for a Polytope, Technical Report 893, School of Operations Research and Industrial Engineering, College of Engineering, Cornell University, Ithaca, New York (1990).

    Google Scholar 

  11. J. P. Norton, Int. J. Control 50, 2423 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Berger, Géométrie, CEDIC/Nathan, Paris (1979).

    Google Scholar 

  13. V. L. Klee, editor. L. Danzer, B. Grünbaum, and V. Klee, in: Proceedings of Symposia in Pure Mathematics, Convexity, Ann. Math. Soc, Providence, Rhode Island (1963). vol. VII, pp. 101-180.

    Google Scholar 

  14. R. Sibson, J. Roy. Stat. Soc. B34, 181 (1972).

    Google Scholar 

  15. D. M. Titterington, Biometrika 62, 313 (1975).

    MathSciNet  MATH  Google Scholar 

  16. E. Welzl, in: Lecture Notes in Computer Science Vol. 555, Springer-Verlag, Berlin, pp. 359–370 (1991).

    Google Scholar 

  17. K. Kiefer and J. Wolfowitz, Can. J. Math. 12, 363 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  18. S. D. Silvey, Optimal Design, Chapman & Hall, London (1980).

    Book  MATH  Google Scholar 

  19. V. V. Fedorov, Theory of Optimal Experiments, Academic Press, New York (1972).

    Google Scholar 

  20. C. L. Atwood, An. Stat. 4, 1124 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  21. C. F. Wu, An. Stat. 6, 1286 (1978).

    Article  MATH  Google Scholar 

  22. L. Pronzato and E. Walter, Automatica 30, 1731 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  23. D. J. Elzinga and D. W. Hearn, Manag. Sci. 19, 96 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  24. N. D. Botkin and V. L. Turova-Botkina, An Algorithm for Finding the Chebyshev Center of a Convex Polyhedron, Technical Report 395, Institüt für Angewandte Mathematik und Statistik, Universität Würzburg, W-8700 Würzburg (1992).

    Google Scholar 

  25. M. Grötschel, L. Lovâsz, and A. Schrijver, Geometrie Algorithms and Combinatorial Optimization, Springer, Berlin (1980).

    Google Scholar 

  26. R. G. Bland, D. Goldfarb, and M. J. Todd, Op. Res. 29, 1039 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Pronzato, E. Walter, and H. Piet-Lahanier, in: Proceedings of the 28th IEEE Conference on Decision and Control, Tampa, FL, pp. 1952-1955 (1989).

    Google Scholar 

  28. E. Polak, Computational Methods in Optimization: a Unified Approach, Academic Press, New York (1971).

    Google Scholar 

  29. N. Z. Shor and O. A. Berezovski, Optim. Method. Software 1, 283 (1992).

    Article  Google Scholar 

  30. A. Vicino and M. Milanese, IEEE Trans. Autom. Control 36, 759 (1991).

    Article  MathSciNet  Google Scholar 

  31. E. Fogel and Y. F. Huang, Automatica 18, 229 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  32. G. Belforte and B. Bona, in: Prep. 7th IFAC/IFORS Symposium on Identification and System Parameter Estimation, York, pp. 1507-1512 (1985).

    Google Scholar 

  33. G. Belforte, B. Bona, and V. Cerone, Automatica 26, 887 (1990).

    Article  MATH  Google Scholar 

  34. J. B. Lasserre, J. Optim. Theory App. 39, 363 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Horst and H. Tuy, Global Optimization, Springer, Berlin, Germany (1990).

    MATH  Google Scholar 

  36. H. Ratschek and J. Rokne, New Computer Methods for Global Optimization, Ellis Horwood Limited, Chichester (1988).

    MATH  Google Scholar 

  37. L. Devroye, Inf. Proc. Lett. 11, 53 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  38. Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming, SIAM, Philadelphia (1994).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pronzato, L., Walter, É. (1996). Volume-Optimal Inner and Outer Ellipsoids. In: Milanese, M., Norton, J., Piet-Lahanier, H., Walter, É. (eds) Bounding Approaches to System Identification. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9545-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9545-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9547-9

  • Online ISBN: 978-1-4757-9545-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics