Skip to main content

Spectrin-Actin Interactions

  • Chapter

Part of the book series: Blood Cell Biochemistry ((BLBI,volume 1))

Abstract

The protein spectrin was first reported in 1968 in water-soluble extracts from erythrocyte membranes (Marchesi and Steers, 1968). Although for some time it was believed that spectrin represented a specific erythrocyte adaptation, in recent years spectrin and spectrinlike proteins have been found in a wide range of other cell types (e.g., see Goodman et al., 1981). These nonerythroid forms of spectrin all share with erythrocyte spectrin a common set of properties: they are proteins of high molecular mass, comprising two distinct subunits of approximately 250,000 and 230,000 Da, respectively; they bind calmodulin in a calcium-dependent manner, though with greatly differing affinities; they bind to actin filaments; and they are associated with the cell membranes through interaction with other proteins, particularly ankyrin (Bennett, 1985). Certainly in the red blood cell, and probably in other cell types, the major functional role of spectrin is to stabilize the membrane, and to provide a linkage for actin filaments to the membrane. While the red cell may be an inadequate model for other cell types, the organization of the erythrocyte cytoskeleton and its role in maintaining erythrocyte shape and deformability are now reasonably well understood, at least in broad terms, and the findings from the red cell give at least an indication of the organization of such molecules in other cells. The present discussion will be limited to erythrocyte spectrin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J. M., and Tyler, J. M., 1980, State of spectrin phosphorylation does not affect erythrocyte shape or spectrin binding to erythrocyte membranes, J. Biol. Chem. 255: 1259–1265.

    PubMed  CAS  Google Scholar 

  • Anderson, J. P., and Morrow, J. S., 1987, The interaction of calmodulin with human erythrocyte spectrin, J. Biol. Chem. 262: 6365–6372.

    PubMed  CAS  Google Scholar 

  • Anderson, R. A., and Lovrien, R. E., 1984, Glycophorin is linked by band 4.1 to the human erythrocyte membrane skeleton, Nature 307: 655–658.

    PubMed  CAS  Google Scholar 

  • Anderson, R. A., and Marchesi, V. T., 1985, Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide, Nature 318: 295–298.

    PubMed  CAS  Google Scholar 

  • Anstee, D. J., Parsons, S. E., Ridgwell, K., Tanner, M. J. A., Merry, A. H., Thomson, E. E., Judson, P. R., Johnson, P., Bates, S., and Fraser, I. D., 1984, Two individuals with elliptocytocytic red cells apparently lack three minor erythrocyte membrane sialoglycoproteins, Biochem. J. 218: 615–619.

    PubMed  CAS  Google Scholar 

  • Atkinson, M. A. L., Morrow, J. S., and Marchesi, V. T., 1982, The polymeric state of actin in the human erythrocyte cytoskeleton, J. Cell Biochem. 18: 493–505.

    PubMed  CAS  Google Scholar 

  • Beaven, G. H., Jean-Baptiste, L., Ungewickell, E., Baines, A. J., Shahbakhti, F., Pinder, J. C., Lux, S. E., and Gratzer, W. B., 1985, An examination of the soluble oligomeric complexes extracted from the red cell membrane and their relation to the membrane cytoskeleton, Eur. J. Cell Biol. 36: 299–306.

    PubMed  CAS  Google Scholar 

  • Bennett, V., 1985, The membrane skeleton of human erythrocytes and its implications for more complex cells, Annu. Rev. Biochem. 54: 273–304.

    PubMed  CAS  Google Scholar 

  • Bennett, V., and Stenbuck, P., 1979, The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes, Nature 280: 468–473.

    PubMed  CAS  Google Scholar 

  • Bennett, V., and Stenbuck, P., 1980a, Human erythrocyte ankyrin: Purification and properties, J. Biol. Chem. 255: 2540–2548.

    PubMed  CAS  Google Scholar 

  • Bennett, V., and Stenbuck, P., 1980b, Association between ankyrin and the cytoplasmic domain of band 3 from the human erythrocyte membrane, J. Biol. Chem. 255: 6424–6432.

    PubMed  CAS  Google Scholar 

  • Brenner, S. L., and Korn, E., 1979, Spectrin—actin interaction, J. Biol. Chem. 254: 8620–8627.

    PubMed  CAS  Google Scholar 

  • Brenner, S. L., and Korn, E., 1980, Spectrin—actin complex isolated from sheep erythrocytes accelerates actin polymerization by simple nucleation, J. Biol. Chem. 255: 1670–1676.

    PubMed  CAS  Google Scholar 

  • Burns, N. R., and Gratzer, W. B., 1985, Interaction of calmodulin with the red cell and its membrane skeleton and with spectrin, Biochemistry 24: 3070–3074.

    PubMed  CAS  Google Scholar 

  • Byers, T. J., and Branton, D., 1985, Visualization of the protein associations in the erythrocyte membrane skeleton, Proc. Natl. Acad. Sci. USA 82: 6153–6155.

    PubMed  CAS  Google Scholar 

  • Calvert, R., Bennett, P., and Gratzer, W. B., 1980a, Properties and structural role of the subunits of human spectrin, Eur. J. Biochem. 107: 355–361.

    PubMed  CAS  Google Scholar 

  • Calvert, R., Ungewickell, E., and Gratzer, W. B., 1980b, A conformational study of human spectrin, Eur. J. Biochem. 107: 363–367.

    PubMed  CAS  Google Scholar 

  • Canham, P. B., 1970, Minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, J. Theor. Biol. 26: 61–81.

    PubMed  CAS  Google Scholar 

  • Cheung, W. Y., 1980, Calmodulin plays a pivotal role in cellular regulation, Science 207: 19–27.

    PubMed  CAS  Google Scholar 

  • Cohen, C. M., and Foley, S. F., 1986, Organization of the spectrin—actin—band 4.1 ternary complex and its regulation by band 4.1 phosphorylation, in: Membrane Skeletons and Cytoskeletal—Membrane Associations ( V. Bennett, C. M. Cohen, S. E. Lux, and J. Palek, eds.), pp. 211–222, Liss, New York.

    Google Scholar 

  • Cohen, C. M., and Korsgren, C., 1980, Band 4.1 causes spectrin—actin gels to become thixotropic, Biochem. Biophys. Res. Commun. 97: 1429–1435.

    PubMed  CAS  Google Scholar 

  • Cohen, C. M., and Langley, R. C., Jr., 1984, Functional characterization of human erythrocyte spectrin a and ß chains: Association with actin and protein 4.1, Biochemistry 23: 4488–4495.

    PubMed  CAS  Google Scholar 

  • Cohen, C. M., Tyler, J. M., and Branton, D., 1980, Spectrin—actin associations studied by electron microscopy of shadowed preparations, Cell 21: 875–883.

    PubMed  CAS  Google Scholar 

  • Cohen, C. M., Langley, R. C., Foley, S. F., and Korsgren, C., 1984, Functional associations of band 4.1 in the erythrocyte membrane skeleton and their role in inherited membrane skeletal abnormalities, Prog. Clin. Biol. Res. 159: 13–29.

    PubMed  CAS  Google Scholar 

  • Cohen, A. M., Liu, S.-C., Lawler, J., Derick, L., and Palek, J., 1988, Identification of the protein 4.1 binding site to phospholipid vesicles, Biochemistry 27: 614–619.

    PubMed  CAS  Google Scholar 

  • Dintenfass, L., 1971, The rheology of blood in vascular disease, J. R. Coll. Physicians London 5: 231–240.

    CAS  Google Scholar 

  • Eder, P. S., Soong, C.-J., and Tao, M., 1986, Phosphorylation reduces the affinity of protein 4.1 for spectrin, Biochemistry 25: 1764–1770.

    PubMed  CAS  Google Scholar 

  • Elgsaeter, A., and Branton, D., 1974, Intramembrane particle aggregation in erythrocyte ghosts. I. The effects of protein removal, J. Cell Biol. 63: 1018–1030.

    PubMed  CAS  Google Scholar 

  • Elgsaeter, A., Shotton, D., and Branton, D., 1976, Intramembrane particle aggregation in erythrocyte ghosts. II. The influence of spectrin aggregation. Biochim. Biophys. Acta 426: 101–122.

    PubMed  CAS  Google Scholar 

  • Elliott, C., and Ralston, G. B., 1984, Solubilization of human erythrocyte band 4.1 protein in the non-ionic detergent Tween 20, Biochim. Biophys. Acta 775: 313–319.

    PubMed  CAS  Google Scholar 

  • Fairbanks, G., Steck, T. L., and Wallach, D. F. H., 1971, Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane, Biochemistry 10: 2606–2617.

    PubMed  CAS  Google Scholar 

  • Fowler, V., and Bennett, V., 1978, Association of spectrin with its membrane attachment site restricts lateral mobility of human erythrocyte integral membrane proteins, J. Supramol. Struct. 8: 215–221.

    CAS  Google Scholar 

  • Fowler, V., and Bennett, V., 1984, Erythrocyte membrane tropomyosin, J. Biol. Chem. 259: 5978–5989.

    PubMed  CAS  Google Scholar 

  • Fowler, V., and Branton, D., 1977, Lateral mobility of human erythrocyte integral membrane proteins, Nature 268: 23–26.

    PubMed  CAS  Google Scholar 

  • Fowler, V., and Taylor, D. L., 1980, Spectrin plus band 4.1 cross-link actin. Regulation by micromolar calcium, J. Cell Biol. 85: 361–376.

    PubMed  CAS  Google Scholar 

  • Furthmayr, H., 1978, Glycophorins A, B, and C: A family of sialoglycoproteins. Isolation and preliminary characterisation of trypsin derived peptides, J. Supramol. Struct. 9: 79–95.

    PubMed  CAS  Google Scholar 

  • Gardner, K., and Bennett, V., 1986, A new erythrocyte membrane-associated protein with calmodulin binding activity: identification and purification, J. Biol. Chem. 261: 1339–1348.

    PubMed  CAS  Google Scholar 

  • Gardner, K., and Bennett, V., 1987, Modulation of spectrin—actin assembly by erythrocyte adducin, Nature 328: 359–362.

    PubMed  CAS  Google Scholar 

  • Glenney, J. R., Glenney, P., and Weber, K., 1982, Erythroid spectrin, brain fodrin, and intestinal brush border proteins (TW-260/240) are related molecules containing a common calmodulin-binding subunit bound to a variant cell type-specific subunit, Proc. Natl. Acad. Sci. USA 79: 4002–4006.

    PubMed  CAS  Google Scholar 

  • Goodman, S. R., Zagon, I. S., and Kulikowski, R. R., 1981, Identification of a spectrin-like protein in nonerythroid cells, Proc. Natl. Acad. Sci. USA 78: 7570–7574.

    PubMed  CAS  Google Scholar 

  • Goodman, S. R., Yu, J., Whitfield, C. F., Culp, E. N., and Posnak, E. J., 1982, Erythrocyte membrane skeletal protein bands 4.la and b are sequence-related phosphoproteins, J. Biol. Chem. 257: 4564–4569.

    PubMed  CAS  Google Scholar 

  • Goodman, S. R., Krebs, K. E., Whitfield, C. F., Riederer, B. M., and Zagon, I. S., 1988, Spectrin and related molecules, CRC Crit. Rev. Biochem. 23: 171–234.

    PubMed  CAS  Google Scholar 

  • Gordon, D. J., Boyer, J. L., and Korn, E. D., 1977, Comparative biochemistry of non-muscle actins, J. Biol. Chem. 252: 8300–8309.

    PubMed  CAS  Google Scholar 

  • Gratzer, W. B., and Beaven, G. H., 1975, Properties of the high molecular weight protein spectrin from human erythrocyte membranes, Eur. J. Biochem. 58: 403–409.

    PubMed  CAS  Google Scholar 

  • Greenquist, A. C., Shohet, S. B., and Bernstein, S. E., 1978, Marked reduction of spectrin in hereditary spherocytosis in the common house mouse, Blood 51: 1149–1155.

    PubMed  CAS  Google Scholar 

  • Haest, C. W. M., 1982, Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane, Biochim. Biophys. Acta 694: 331–352.

    PubMed  CAS  Google Scholar 

  • Hainfeld, J. F., and Steck, T. L., 1977, The sub-membrane reticulum of the human erythrocyte: A scanning electron microscope study, J. Supramol. Struct. 6: 301–311.

    PubMed  CAS  Google Scholar 

  • Hanspal, M. K., and Ralston, G. B., 1981, Purification of a trypsin-insensitive fragment of spectrin from human erythrocyte membranes, Biochim. Biophys. Acta 669: 133–139.

    PubMed  CAS  Google Scholar 

  • Hanspal, M. K., and Ralston, G. B., 1982, Binding of an 80,000 dalton fragment of spectrin to intact spectrin, Biochim. Biophys. Acta 709: 105–109.

    PubMed  CAS  Google Scholar 

  • Harris, H. W., and Lux, S. E., 1980, Structural characterization of the phosphorylation sites of human erythrocyte spectrin, J. Biol. Chem. 255: 11965–11972.

    Google Scholar 

  • Husain, A., Howlett, G. J., and Sawyer, W. H., 1984, The interaction of calmodulin with human and avian spectrin, Biochem. Biophys. Res. Commun. 122: 1194–1200.

    PubMed  CAS  Google Scholar 

  • Husain, A., Howlett, G. J., and Sawyer, W. H., 1985, The interaction of calmodulin with erythrocyte membrane proteins, Biochem. Int. 10:1–12.

    Google Scholar 

  • Husain-Chishti, A., Levin, A., and Branton, D., 1988, Abolition of actin-bundling by phosphorylation of human erythrocyte protein 4.9, Nature 334: 718–720.

    PubMed  CAS  Google Scholar 

  • Jarrett, H. W., and Penniston, J. T., 1977, Partial purification of the Ca2+-Mg2+ ATPase activator from human erythrocytes: Its similarity to the activator of 3’,5’-cyclic nucleotide phosphodiesterase, Biochem. Biophys. Res. Commun. 77: 1210–1216.

    PubMed  CAS  Google Scholar 

  • Kam, Z., Josephs, R., Eisenberg, H., and Gratzer, W. B., 1977, Structural study of spectrin from human erythrocyte membranes, Biochemistry 16: 5568–5572.

    PubMed  CAS  Google Scholar 

  • Knowles, W. J., Speicher, D. W., Morrow, J. S., and Marchesi, V. T., 1979, Renaturation of the chemical domains of human erythrocyte spectrin, J. Cell Biol. 83 (2, Pt. 2): 272a.

    Google Scholar 

  • Leto, T. L., and Marchesi, V. T., 1984, A structural model of human erythrocyte protein 4.1, J. Biol. Chem. 259: 4603–4608.

    PubMed  CAS  Google Scholar 

  • Lichtman, M. A., 1973, Rheology of leukocytes, leukocyte suspensions and blood in leukaemia. Possible relationships to clinical manifestations, J. Clin. Invest. 52: 350–358.

    PubMed  CAS  Google Scholar 

  • Lin, D. C., and Lin, S., 1979, Actin polymerization induced by a motility-related high-affinity cytochalasin binding complex from human erythrocyte membranes, Proc. Natl. Acad. Sci. USA 76: 2345–2349.

    PubMed  CAS  Google Scholar 

  • Ling, E., Gardner, K., and Bennett, V., 1986, Modulation of red cell band 4.1 function by c-AMP-dependent kinase and protein kinase C phosphorylation, J. Biol. Chem. 261: 13875–13878.

    PubMed  CAS  Google Scholar 

  • Ling, E., Danilov, Y. N., and Cohen, C. M., 1988, Modulation of red cell band 4.1 function by cAMP-dependent kinase and protein kinase C phosphorylation, J. Biol. Chem. 263: 2209–2216.

    PubMed  CAS  Google Scholar 

  • Liu, S.-C., and Palek, J., 1980, Spectrin tetramer—dimer equilibrium and the stability of erythrocyte membrane cytoskeletons, Nature 285: 586–588.

    PubMed  CAS  Google Scholar 

  • Liu, S.-C., and Palek, J., 1984, Hemoglobin enhances the self-association of spectrin heterodimers in human erythrocytes, J. Biol. Chem. 259: 11556–11562.

    PubMed  CAS  Google Scholar 

  • Liu, S.-C., Palek, J., Prchal, J., and Castleberry, R. P., 1981, Altered spectrin dimer—dimer association and instability of erythrocyte membrane skeletons in hereditary pyropoikilocytosis, J. Clin. Invest. 68: 597–605.

    PubMed  CAS  Google Scholar 

  • Liu, S.-C., Palek, J., and Prchal, J. T., 1982, Defective spectrin dimer—dimer association in hereditary elliptocytosis. Proc. Natl. Acad. Sci. USA 79: 2072–2076.

    PubMed  CAS  Google Scholar 

  • Liu, S.-C., Windisch, P., Kim, S., and Palek, J., 1984, Oligomeric states of spectrin in normal erythrocyte membranes: Biochemical and electron microscopic studies, Cell 37: 587–594.

    PubMed  CAS  Google Scholar 

  • Liu, S.-C., Derick, L. H., and Palek, J., 1987, Visualization of the hexagonal lattice in the erythrocyte membrane skeleton, J. Cell Biol. 104: 527–536.

    PubMed  CAS  Google Scholar 

  • Lux, S. E., 1979, Spectrin—actin membrane skeleton of normal and abnormal red blood cells, Semin. Hematol. 16: 22–51.

    Google Scholar 

  • Marchesi, S. L., Steers, E., Marchesi, V. T., and Tillack, T. W., 1970, Physical and chemical properties of a protein isolated from red cell membranes, Biochemistry 9: 50–57.

    PubMed  CAS  Google Scholar 

  • Marchesi, V. T., 1985, Stabilizing infrastructure of cell membranes, Annu. Rev. Cell Biol. 1: 531–561.

    PubMed  CAS  Google Scholar 

  • Marchesi, V. T., and Steers, E., 1968, Selective solubilization of a protein component of the red cell membrane, Science 159: 203–204.

    PubMed  CAS  Google Scholar 

  • Marinetti, G. V., and Crain, R. C., 1978, Topology of amino-phospholipids in the red cell membrane, J. Supramol. Struct. 8: 191–213.

    CAS  Google Scholar 

  • Matsuzaki, F., Sutoh, K., and Ikai, A., 1985, Structural unit of the erythrocyte cytoskeleton. Isolation and electron microscopic examination, Eur. J. Cell Biol. 39: 153–160.

    PubMed  CAS  Google Scholar 

  • Minton, A. P., 1983, The effect of volume occupancy upon the thermodynamic activity of proteins: Some biochemical consequences, Mol. Cell. Biochem. 55: 119–140.

    PubMed  CAS  Google Scholar 

  • Mische, S. M., Mooseker, M. S., and Morrow, J., 1987, Erythrocyte adducin: A calmodulin-regulated actin-bundling protein that stimulates spectrin—actin binding, J. Cell Biol. 105: 2837–2845.

    PubMed  CAS  Google Scholar 

  • Mombers, C., Van Dijck, P. W. M., Van Deenen, L. L. M., De Gier, J., and Verkleij, A., 1977, The interaction of spectrin—actin and synthetic phospholipids, Biochim. Biophys. Acta 470: 152–160.

    PubMed  CAS  Google Scholar 

  • Morris, M. B., and Ralston, G. B., 1984, A reappraisal of the self-association of human spectrin, Biochim. Biophys. Acta 788: 132–137.

    PubMed  CAS  Google Scholar 

  • Morris, M. B., and Ralston, G. B., 1985, Determination of the parameters of protein self-association by direct fitting to the omega function, Biophys. Chem. 23: 49–61.

    PubMed  CAS  Google Scholar 

  • Morrow, J. S., and Marchesi, V. T., 1981, Self-assembly of spectrin oligomers in vitro: Basis for a dynamic cytoskeleton, J. Cell Biol. 88: 463–468.

    PubMed  CAS  Google Scholar 

  • Morrow, J. S., Speicher, D. W., Knowles, W. J., Hsu, C. J., and Marchesi, V. T., 1980, Identification of functional domains of human erythrocyte spectrin, Proc. Natl. Acad. Sci. USA 77: 6592–6596.

    PubMed  CAS  Google Scholar 

  • Mueller, T. J., and Morrison, M., 1981, Glycoconnectin (PAS 2) a membrane attachment site for the human erythrocyte cytoskeleton, in: Erythrocyte Membranes 2: Recent Clinical and Experimental Advances (W. C. Kruckeberg, J. W. Eaton, and G. J. Brewer, eds.), pp. 95–112, Liss, New York.

    Google Scholar 

  • Nakashima, K., and Beutler, E., 1979, Comparison of structure and function of human erythrocyte and human muscle actin, Proc. Natl. Acad. Sci. USA 76: 935–938.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1986, Studies and perspectives of protein kinase C, Science 233: 305–312.

    PubMed  CAS  Google Scholar 

  • Ohanian, V., and Gratzer, W. B., 1984, Preparation of red-cell membrane cytoskeletal constituents and characterization of protein 4.1, Eur. J. Biochem. 144: 375–379.

    PubMed  CAS  Google Scholar 

  • Ghanian, V., Wolfe, L. C., John, K. M., Pinder, J. C., Lux, S. E., and Gratzer, W. B., 1984, Analysis of the ternary interaction of the red cell membrane skeletal proteins spectrin, actin, and 4.1, Biochemistry 23: 4416–4420.

    Google Scholar 

  • Owens, W., Mueller, T. J., and Morrison, M., 1980, A minor sialoglycoprotein of the human erythrocyte membrane, Arch. Biochem. Biophys. 204: 247–254.

    PubMed  CAS  Google Scholar 

  • Palek, J., and Liu, S.-C., 1981, Alterations of spectrin assembly in the red cell membrane: Functional consequences. Scand. J. Clin. Lab. Invest. 41 (Suppl. 156): 131–138.

    CAS  Google Scholar 

  • Pasternack, G. R., Anderson, R. A., Leto, T. L., and Marchesi, V. T., 1985, Interactions between protein 4.1 and band 3. An alternative binding site for an element of membrane skeleton, J. Biol. Chem. 260: 36763683.

    Google Scholar 

  • Patel, V. P., and Fairbanks, G., 1981, Spectrin phosphorylation and shape change of human erythrocyte ghosts, J. Cell Biol. 88: 430–440.

    PubMed  CAS  Google Scholar 

  • Patel, V. P., and Fairbanks, G., 1986, Relationship of major phosphorylation reactions and MgATPase activities to ATP-dependent shape change of human erythrocyte membranes, J. Biol. Chem. 261: 3170–3177.

    PubMed  CAS  Google Scholar 

  • Pinder, J. C., and Gratzer, W. B., 1983, Structural and dynamic states of actin in the erythrocyte, J. Cell Biol. 96: 768–775.

    PubMed  CAS  Google Scholar 

  • Pinder, J. C., Bray, D., and Gratzer, W. B., 1975, Actin polymerization induced by spectrin, Nature 258: 765766.

    Google Scholar 

  • Pinder, J. C., Ungewickell, E., Bray, D., and Gratzer, W. B., 1978a, The spectrin—actin complex and erythrocyte shape, J. Supramol. Struct. 8: 439–445.

    PubMed  CAS  Google Scholar 

  • Pinder, J. C., Bray, D., and Gratzer, W. B., 1978b, Control of interaction of spectrin and actin by phosphorylation, Nature 270: 752–754.

    Google Scholar 

  • Pinder, J. C., Ungewickell, E., Calvert, R., Moms, E., and Gratzer, W. B., 1979, Polymerization of G-actin by spectrin preparations: Identification of the active constituent, FEBS Lett. 104: 396–400.

    PubMed  CAS  Google Scholar 

  • Pinder, J. C., Clerk, S. E., Baines, A. J., Morris, E., and Gratzer, W. B., 1981, The construction of the red cell cytoskeleton, in: The Red Cell: Fifth Ann Arbor Conference ( G. M. Brewer, ed.). pp. 343–354, Liss, New York.

    Google Scholar 

  • Pinder, J. C., Ghanian, V., and Gratzer, W. B., 1984, Spectrin and protein 4.1 as an actin filament capping complex, FEBS Lett. 169: 161–164.

    PubMed  CAS  Google Scholar 

  • Podgorski, A., and Elbaum, D., 1985, Properties of red cell membrane proteins: Mechanism of spectrin and band 4.1 interaction, Biochemistry 24: 7871–7876.

    PubMed  CAS  Google Scholar 

  • Podolski, J. L., and Steck, T. L., 1988, Association of deoxyribonuclease I with the pointed ends of actin filaments in human red blood cell membrane skeletons, J. Biol. Chem. 263: 638–645.

    PubMed  CAS  Google Scholar 

  • Pollard, T. D., and Cooper, J. A., 1986, Actin and actin-binding proteins, Annu. Rev. Biochem. 55: 987–1035.

    PubMed  CAS  Google Scholar 

  • Portis, A., Newton, C., Pangborn, W., and Papahadjopoulos, D., 1979, Studies on the mechanism of membrane fusion: Evidence for an intermembrane Cat+—phospholipid complex, synergism with Mgt+, and inhibition by spectrin, Biochemistry 18: 780–790.

    PubMed  CAS  Google Scholar 

  • Quist, E., 1980, Regulation of erythrocyte membrane shape by Cat+, Biochem. Biophys. Res. Commun. 92: 631–637.

    PubMed  CAS  Google Scholar 

  • Ralston, G. B., 1975, The isolation of aggregates of spectrin from bovine erythrocyte membranes, Aust. J. Biol. Sci. 28: 259–266.

    PubMed  CAS  Google Scholar 

  • Ralston, G. B., 1978, Physical chemical studies of spectrin, J. Supramol. Struct. 8: 361–374.

    PubMed  CAS  Google Scholar 

  • Ralston, G. B., and Crisp, E. A., 1981, The action of organic mercurials on the erythrocyte membrane, Biochim. Biophys. Acta 649: 98–104.

    PubMed  CAS  Google Scholar 

  • Ralston, G. B., Dunbar, J. C., and White, M. D., 1977, The temperature dependent dissociation of spectrin, Biochim. Biophys. Acta 491: 345–348.

    PubMed  CAS  Google Scholar 

  • Schatzman, H. J., 1975, Active calcium transport and Ca2 + -activated ATPase in human red cells, Curr. Top. Membr. Transp. 6: 125–168.

    Google Scholar 

  • Schindler, M., Koppel, D. E, and Sheetz, M. P., 1980, Modulation of membrane protein lateral mobility by polyphosphates and polyamines, Proc. Natl. Acad. Sci. USA 77: 1457–1461.

    PubMed  CAS  Google Scholar 

  • Sears, D. E., Marchesi, V. T,. and Morrow, J. S., 1986, A calmodulin and a-subunit binding domain in human erythrocyte spectrin, Biochim. Biophys. Acta 870: 432–442.

    CAS  Google Scholar 

  • Shahbakhti, F., and Gratzer, W. B., 1986, Analysis of the self-association of human red cell spectrin, Biochemistry 25: 5969–5975.

    PubMed  CAS  Google Scholar 

  • Sheetz, M. P., 1979, Integral membrane protein interaction with Triton cytoskeletons of erythrocytes, Biochim. Biophys. Acta 557: 122–134.

    PubMed  CAS  Google Scholar 

  • Sheetz, M. P., and Casaly, J., 1981, Phosphate metabolite regulation of spectrin interactions, Scand. J. Clin. Lab Invest. 41 (Suppl. 156): 117–122.

    CAS  Google Scholar 

  • Sheetz, M. P., and Sawyer, D., 1978, Triton shells of intact erythrocytes, J. Supramol. Struct. 8:399–412. Sheetz, M. P., and Singer, S. J., 1977, On the mechanism of ATP-induced shape changes in human erythrocyte membranes, J. Cell Biol. 73: 638–646.

    Google Scholar 

  • Sheetz, M. P., Painter, R. G., and Singer, S. J., 1976, Relationships of the spectrin complex of human erythrocyte membranes to the actomyosins of muscle cells, Biochemistry 15: 4486–4492.

    PubMed  CAS  Google Scholar 

  • Shen, B. W., Josephs, R., and Steck, T. L., 1984, Ultrastructure of unit fragments of the skeleton of the human erythrocyte membrane, J. Cell Biol. 99: 810–821.

    PubMed  CAS  Google Scholar 

  • Shen, B. W., Josephs, R., and Steck, T. L., 1986, Ultrastructure of the intact skeleton of the human erythrocyte membrane, J. Cell Biol. 102: 997–1006.

    PubMed  CAS  Google Scholar 

  • Shiffer, K. A., and Goodman, S. R., 1984, Protein 4.1: Its association with the human erythrocyte membrane, Proc. Natl. Acad. Sci. USA 81: 4404–4408.

    PubMed  CAS  Google Scholar 

  • Shiffer, K. A., Goerke, J., Duzgunes, N., Fedor, J., and Shohet, S. B., 1988, Interactions of erythrocyte protein 4.1 with phospholipide. A monolayer and liposome study, Biochim. Biophys. Acta 937: 269–280.

    PubMed  CAS  Google Scholar 

  • Shohet, S. B., 1979, Reconstitution of spectrin-deficient, spherocytic mouse erythrocyte membranes, J. Clin. Invest. 64: 483–494.

    CAS  Google Scholar 

  • Shotton, D. M., Burk, B. E., and Branton, D., 1979, The molecular structure of human erythrocyte spectrin. Biophysical and electron microscopic studies, J. Mol. Biol. 131: 303–329.

    PubMed  CAS  Google Scholar 

  • Siegel, D. L., and Branton, D., 1985, Partial purification and characterization of an actin-bundling protein, band 4.9, from human erythrocytes, J. Cell Biol. 100: 775–785.

    PubMed  CAS  Google Scholar 

  • Sobue, K., Muramoto, Y., Fujita, M., and Kakiuchi, S., 1981, Calmodulin-binding protein of erythrocyte cytoskeleton, Biochem. Biophys. Res. Commun. 100: 1063–1070.

    PubMed  CAS  Google Scholar 

  • Sondag, D., Alloisio, N., Blanchard, D., Ducluzeau, M.-T., Colonna, P., Bachir, D., Bloy, C., Cartron, J.-P., and Delaunay, J., 1987, Gerbich reactivity in 4.1 (—) hereditary elliptocytosis and protein 4.1 level in blood group Gerbich deficiency, Br. J. Haematol. 65: 43–50.

    PubMed  CAS  Google Scholar 

  • Speicher, D. W., 1986, The present status of erythrocyte spectrin structure: The 106—residue repetitive structure is a basic feature of an entire class of proteins, J. Cell Biochem. 30: 245–258.

    PubMed  CAS  Google Scholar 

  • Speicher, D. W., and Marchesi, V. T., 1984, Erythrocyte spectrin is comprised of many homologous triple helical segments, Nature 311: 177–180.

    PubMed  CAS  Google Scholar 

  • Speicher, D. W., Morrow, J. S., Knowles, W. J., and Marchesi, V. T., 1980, Identification of proteolytically resistant domains of human erythrocyte spectrin, Proc. Natl. Acad. Sci. USA 77: 5673–5677.

    PubMed  CAS  Google Scholar 

  • Speicher, D. W., Morrow, J. S., Knowles, W. J., and Marchesi, V. T., 1982, A structural model of human erythrocyte spectrin, J. Biol. Chem. 257: 9093–9101.

    PubMed  CAS  Google Scholar 

  • Steck, T. L., 1974, Organization of proteins in the human red blood cell membrane, J. Cell Biol. 62: 119.

    Google Scholar 

  • Stokke, B. T., and Elgsaeter, A., 1981, Human spectrin VI. A viscometric study, Biochim. Biophys. Acta 640: 640–645.

    PubMed  CAS  Google Scholar 

  • Stromqvist, M., Backman, L., and Shanbhag, V., 1985, Effect of spectrin dimer on actin polymerization, FEBS Lett. 190: 15–20.

    PubMed  CAS  Google Scholar 

  • Takakuwa, Y., and Mohandas, N., 1988, Modulation of erythrocyte membrane material properties by Cat+ and calmodulin, J. Clin. Invest. 82: 394–400.

    PubMed  CAS  Google Scholar 

  • Tilley, L., and Ralston, G. B., 1984, Purification and kinetic characterization of human erythrocyte actin, Biochim. Biophys. Acta 790: 46–52.

    PubMed  CAS  Google Scholar 

  • Tilley, L., and Ralston, G. B., 1987, Effect of erythrocyte spectrin on actin self-association, Aust. J. Biol. Sci. 40: 27–36.

    PubMed  CAS  Google Scholar 

  • Tilney, L. G., and Detmers, P., 1975, Actin in erythrocyte ghosts and its association with spectrin, J. Cell Biol. 66: 508–520.

    PubMed  CAS  Google Scholar 

  • Tsukita, S., Tsukita, S., and Ishikawa, H., 1980, Cytoskeletal network underlying the human erythrocyte membrane, J. Cell Biol. 85: 567–576.

    PubMed  CAS  Google Scholar 

  • Tsukita, S., Tsukita, S., and Ishikawa, H., 1984, Bidirectional polymerization of g-actin on the human erythrocyte membrane, J. Cell Biol. 98: 1102–1110.

    PubMed  CAS  Google Scholar 

  • Tyler, J., Hargreaves, W., and Branton, D., 1979, Purification of two spectrin binding proteins: Biochemical and electron microscopic evidence for site-specific reassociation between spectrin and band 2.1 and 4.1, Proc. Natl. Acad. Sci. USA 76: 5192–5196.

    PubMed  CAS  Google Scholar 

  • Tyler, J. M., Reinhardt, B. N., and Branton, D. 1980, Associations of erythrocyte membrane proteins: Binding of purified bands 2.1 and 4.1 to spectrin, J. Biol. Chem. 255: 7034–7039.

    PubMed  CAS  Google Scholar 

  • Ungewickell, E., and Gratzer, W. B., 1978, Self-association of human spectrin. A thermodynamic and kinetic study, Eur. J. Biochem. 88: 379–385.

    PubMed  CAS  Google Scholar 

  • Ungewickell, A., Bennett, P. M., Calvert, R., Ghanian, V., and Gratzer, W. B., 1979, In vitro formation of a complex between cytoskeletal proteins of the human erythrocyte, Nature 280: 811–814.

    CAS  Google Scholar 

  • Weed, R. I., LaCelle, P. L., and Merrill, E. W., 1969, Metabolic dependence of red cell deformability, J. Clin. Invest. 48: 795–809.

    PubMed  CAS  Google Scholar 

  • Whitfield, C. F., Culp, E. N., and Goodman, S. R., 1986, Transfer of label from protein 4.1-crosslinker complex to 4.1 membrane binding sites, J. Cell Biol. 103: 542a.

    Google Scholar 

  • Wolfe, L. C., John, K. M., Falcone, J. C., Byrne, A. M., and Lux, S. E., 1982, A genetic defect in the binding of protein 4.1 to spectrin in a kindred with hereditary spherocytosis, N. Engl. J. Med. 307: 1367–1374.

    PubMed  CAS  Google Scholar 

  • Yu, J., Fischman, D. A., and Steck, T. L., 1973, Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents, J. Supramol. Struct. 1: 233–248.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ralston, G.B. (1990). Spectrin-Actin Interactions. In: Harris, J.R. (eds) Erythroid Cells. Blood Cell Biochemistry, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9528-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9528-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9530-1

  • Online ISBN: 978-1-4757-9528-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics