Skip to main content

Function and Structure of the Red Blood Cell Cytoskeleton

  • Chapter
Book cover Erythroid Cells

Part of the book series: Blood Cell Biochemistry ((BLBI,volume 1))

Abstract

Mature red blood cells of mammals consist only of cytoplasm and a cell membrane: they lack nucleus, mitochondria, and all other organelles. Cytoplasm contains all enzymes of glycolysis and the hexose monophosphate shunt, and some of those for nucleoside and nucleotide metabolism. These systems provide energy-rich phosphate as ATP and reducing power as NADH and NADPH, as in any other cell. Since most of the synthetic systems for biochemical compounds are lacking in red cells, ATP is mostly consumed on the cell membrane, except for priming to pump glycolysis. The erythrocyte membrane usually obtained by osmotic hemolysis is composed of a lipid bilayer and a fibrous undercoat structure; the latter is generally classified as a part of the cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ACD blood:

blood preserved with acid—citrate—dextrose (NIH formula A)

PCD blood:

blood preserved with phosphate—citrate—dextrose

Hb:

hemoglobin

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PS:

phosphatidylserine

PI:

phosphatidylinositol

WGA:

wheat germ agglutinin.

References

  • Anderson, D. R., Davis, J. L., and Larraway, K. L., 1977, Calcium-promoted changes of the human erythrocyte membrane. Involvement of spectrin, transglutaminase and a membrane bound proteinase, J. Biol. Chem. 252: 6617–6623.

    PubMed  CAS  Google Scholar 

  • Anderson, J. P., and Morrow, J. S., 1987, The interaction of calmodulin with human erythrocyte spectrin. Inhibition of protein 4.1-stimulated actin binding, J. Biol. Chem. 262: 6365–6372.

    PubMed  CAS  Google Scholar 

  • Anderson, R. A., and Lovrien, R. E., 1981, Erythrocyte sidedness in lectin control of the Ca-A23187 mediated discocyte—echinocyte conversion, Nature 292: 158–161.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R. A., and Lovrien, R. E., 1984, Glycophorin is linked by band 4.1 protein to the human erythrocyte membrane skeleton, Nature 307: 655–658.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R. A., and Marchesi, V. T., 1985, Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide, Nature 318: 295–298.

    Article  PubMed  CAS  Google Scholar 

  • Avissar, N., Inbal, A., Rabizadeh, E., Shaklai, M., and Shaklai, N., 1984, Interaction of spectrin with hemin disaggregates spectrin associations, Biochem. Mt. 8: 113–120.

    CAS  Google Scholar 

  • Baess, B. U., and Vincenzi, F. F., 1980, Calmodulin activation of red blood cell (Ca2± + Mg2±)-ATPase and its antagonism by phenothiazine, Mol. Pharmacol. 18: 253–258.

    Google Scholar 

  • Beaven, G. H., Jean-Baptiste, L., Ungewickell, E., Baines, A. J., Shahbakhti, F., Pinder, J. C., Lux, S. E., and Gratzer, W. B., 1985, An examination of the soluble oligomeric complexes extracted from the red cell membrane and their relation to the membrane cytoskeleton, Eur. J. Cell Biol. 36: 299–306.

    PubMed  CAS  Google Scholar 

  • Bennett, V., 1978, Purification of an active proteolytic fragment of the membrane attachment site for human erythrocyte spectrin, J. Biol. Chem. 253: 2292–2299.

    PubMed  CAS  Google Scholar 

  • Bennett, V., 1982, Isolation of an ankyrin—band 3 oligomer from human erythrocyte membranes, Biochim. Biophys. Acta 689: 475–484.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, V., 1985, The membrane skeleton of human erythrocytes and its implications for more complex cells, Annu. Rev. Biochem. 54: 273–304.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, V., 1989, The spectrin—actin junction of erythrocyte membrane skeleton, Biochim. Biophys. Acta 988: 107–121.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, V., and Branton, D., 1977, Selective association of spectrin with the cytoplasmic surface of human erythrocyte plasma membranes, J. Biol. Chem. 252: 2753–2763.

    PubMed  CAS  Google Scholar 

  • Bennett, V., and Stenbuck, P. J., 1979, Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin, J. Biol. Chem. 254: 2533–2541.

    PubMed  CAS  Google Scholar 

  • Bennett, V., and Stenbuck, P. J., 1980, Association between ankyrin and the cytoplasmic domain of band 3 isolated from the human erythrocyte membrane, J. Biol. Chem. 255: 6424–6432.

    Google Scholar 

  • Bennett, V., Gardner, K., and Steiner, J. P., 1988, Brain adducin: A protein kinase C substrate that may mediate site-directed assembly at the spectrin—actin junction, J. Biol. Chem. 263: 5860–5869.

    PubMed  CAS  Google Scholar 

  • Birchmyer, W., and Singer, S. J., 1977, On the mechanism of ATP-induced shape changes in human erythrocyte membranes. II. The role of ATP, J. Cell Biol. 73: 647–659.

    Article  Google Scholar 

  • Brenner, S., and Korn, E., 1980, Spectrin/actin complex isolated from sheep erythrocytes: Actin polymerization by simple nucleation, J. Biol. Chem. 255: 1670–1676.

    PubMed  CAS  Google Scholar 

  • Burns, N. R., and Gratzer, W. B., 1985, Interaction of calmodulin with the red cell and its membrane skeleton and with spectrin, Biochemistry 24: 3070–3074.

    Article  PubMed  CAS  Google Scholar 

  • Byers, J.,and Branton, D., 1985, Visualization of the protein associations in the erythrocyte membrane skeleton, Proc. Natl. Acad. Sci. USA 82:6153–6157.

    Google Scholar 

  • Calvez, J. Y., Zachowski, A., Herrmann, A., Morrot, G., and Devaux, P. F., 1988, Asymmetric distribution of phospholipids in spectrin-poor erythrocyte vesicles, Biochemistry 27: 5666–5670.

    Article  PubMed  CAS  Google Scholar 

  • Carter, D. P., and Fairbanks, G., 1984, Inhibition of erythrocyte membrane shape change by band 3 cytoplasmic fragment, J. Cellular Biochem. 24: 385–393.

    Article  CAS  Google Scholar 

  • Chasis, J. A., and Mohandas, N., 1986, Erythrocyte membrane deformability and stability: Two distinct membrane properties that are independently regulated by skeletal protein associations, J. Cell Biol. 103: 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Church, A., Fairbanks, G., and Palek, J., 1975, Role of calcium in spectrin retention by ghosts of fresh and ATP depleted erythrocytes, Blood 46: 1004.

    Google Scholar 

  • Cohen, A. M., Liu, S.-C., Derick, L. H., and Palek, J., 1986, Ultrastructural studies of the interaction of spectrin with phosphatidylserine liposomes, Blood 68: 920–926.

    PubMed  CAS  Google Scholar 

  • Cohen, A. M., Liu, S.-C., Lawler, J., Derick, L., and Palek, J., 1988, Identification of the protein 4.1 binding site to phosphatidylserine vesicles, Biochemistry 27: 614–619.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, C. M., 1983, The molecular organization of the red cell membrane skeleton, Semin. Hematol. 20: 14 1158.

    Google Scholar 

  • Cohen, C. M., and Foley, S. F., 1982, The role of band 4.1 in the association of actin with erythrocyte membranes, Biochim. Biophys. Acta 688: 691–701.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, C. M., and Foley, S. F., 1984, Biochemical characterization of complex formation by human erythrocyte spectrin, protein 4.1, and actin, Biochemistry 23: 6091–6098.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, C. M., and Foley, S. F., 1986, Phorbol ester-and Cat+-dependent phosphorylation of human red cell membrane skeletal proteins, J. Biol. Chem. 261: 7701–7709.

    PubMed  CAS  Google Scholar 

  • Cohen, C. M., and Langley, R. C., Jr., 1984, Functional characterization of human erythrocyte spectrin a and ß chains: Association with actin and erythrocyte protein 4.1, Biochemistry 23: 4488–4495.

    Article  PubMed  CAS  Google Scholar 

  • Choen, C. M., 1983, The molecular organization of the red cell membrane skeleton, Semin. in Hematol. 20:141–158.

    Google Scholar 

  • Coleman, T. R., Harris, A. S., Mische, S. M., Mooseker, M. S., and Morrow, J. S., 1987, Beta spectrin bestows protein 4.1 sensitivity on spectrin—actin interactions, J. Cell Biol. 104: 519–526.

    Article  PubMed  CAS  Google Scholar 

  • Conboy, J., Kan, Y., Mohandas, N., and Shohet, S., 1986, Molecular cloning of protein 4.1, a major structural element of the human erythrocyte membrane skeleton, Proc. Natl. Acad. Sci. USA 83: 9512–9516.

    Article  PubMed  CAS  Google Scholar 

  • Connor, J. C., and Schroit, A. J., 1988, Transbilayer movement of phosphatidylserine in erythrocytes: Inhibition of transport and preferential labeling of a 31,000-dalton protein by sulfhydryl reactive reagents, Biochemistry 27: 848–851.

    Article  PubMed  CAS  Google Scholar 

  • Daleke, D. L., and Huestis, W. H., 1985, Incorporation and translocation of aminophospholipids in human erythrocytes, Biochemistry 24: 5406–5416.

    Article  PubMed  CAS  Google Scholar 

  • Elbaum, D., Mimms, L. T., and Branton, D., 1984, Modulation of actin polymerization by the spectrin—band 4.1 complex, Biochemistry 23: 4813–4816.

    Article  PubMed  CAS  Google Scholar 

  • Elgsaeter, A., and Branton, D., 1974, Intramembrane particle aggregation in erythrocyte ghosts. 1. The effects of protein removal, J. Cell Biol. 63: 1018–1030.

    Article  PubMed  CAS  Google Scholar 

  • Fairbanks, B., Steck, T. L., and Wallach, D. F. H., 1971, Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane, Biochemistry 10: 2607–2617.

    Article  Google Scholar 

  • Fowler, V. M., 1987, Identification and purification of a tropomyosin binding protein from human erythrocytes, J. Biol. Chem. 262: 12792–12800.

    PubMed  CAS  Google Scholar 

  • Fowler, V., and Bennett, V., 1984, Erythrocyte membrane tropomyosin purification and properties, J. Biol. Chem. 259: 5978–5989.

    PubMed  CAS  Google Scholar 

  • Fowler, V. M., and Bennett, V., 1978, Association of spectrin with its membrane attachment site restricts lateral mobility of human erythrocyte integral proteins, J. Supramol. Struct. 8: 215–221.

    Article  CAS  Google Scholar 

  • Fowler, V. M., Davis, V., and Benett, V., 1985, Human erythrocyte myosin: Identification and purification, J. Cell Biol 100: 47–55.

    Article  PubMed  CAS  Google Scholar 

  • Gardner, K., and Bennett, V., 1986, A new erythrocyte membrane-associated protein with calmodulin binding activity. Identification and purification, J. Biol. Chem. 261: 1339–1348.

    PubMed  CAS  Google Scholar 

  • Gardner, K., and Bennett, V., 1987, Modulation of spectrin—actin assembly by erythrocyte adducin, Nature 328: 359–362.

    Article  PubMed  CAS  Google Scholar 

  • Hall, T. G., and Bennett, V., 1987, Regulatory domains of erythrocyte ankyrin, J. Biol. Chem. 262: 1053710545.

    Google Scholar 

  • Hargreaves, W., Giedd, K., Verkleij, A., and Branton, D., 1980, Reassociation of ankyrin with band 3 in erythrocyte membranes and in lipid vesicles, J. Biol. Chem. 255: 11965–11972.

    PubMed  CAS  Google Scholar 

  • Heast, C. W. M., 1982, Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane, Biochim. Biophys. Acta 694: 331–352.

    Article  Google Scholar 

  • Heubusch, P., Jung, C. Y., and Green, F. A., 1985, The osmotic response of human erythrocyte and the membrane cytoskeleton, J. Cell. Physiol. 122: 266–272.

    Article  PubMed  CAS  Google Scholar 

  • Holt, G. D., Haltiwanger, R. S., Torres, C.-R., and Hart, G. W., 1987, Erythrocytes contain cytoplasmic glycoprotin, J. Biol. Chem. 262: 14847–14850.

    PubMed  CAS  Google Scholar 

  • Husain, A., Howlett, G., and Sawyer, W. H., 1985a, The interaction of calmodulin with erythrocyte membrane proteins, Biochem. Int. 10: 1–12.

    PubMed  CAS  Google Scholar 

  • Husain, A., Howlett, G. J., and Sawyer, W. H., 1985b, Calmodulin activation of red blood cell (Ca2+ + Mgt+)-ATPase and its antagonism by phenothiazine, Mol. Pharmacol. 18: 253–258.

    Google Scholar 

  • Janmey, P. A., and Stossel, T. P., 1987, Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate, Nature 325: 362–364.

    Article  PubMed  CAS  Google Scholar 

  • Jarret, H. W., and Penniston, J. T., 1978, Purification of the Cat+-stimulated ATPase activator from human erythrocytes, J. Biol. Chem. 253: 4676–4682.

    Google Scholar 

  • Jinbu, Y., Sato, S., Nakao, T., and Nakao, M., 1982, Ankyrin is necessary for both drug-induced and ATP-induced shape change of human erythrocyte ghosts, Biochem. Biophys. Res. Commun. 104: 1087–1092.

    Article  PubMed  CAS  Google Scholar 

  • Jinbu, Y., Nakao, M., Otsuka, M., and Sato, S., 1983, Two steps in ATP-dependent shape change of human erythrocyte ghosts, Biochem. Biophys. Res. Commun. 112: 384–390.

    Article  PubMed  CAS  Google Scholar 

  • Jinbu, Y., Sato, S., Nakao, M., and Tsukita, S., 1984a, Cat+- and Mg-ATP-dependent shape change of human erythrocyte ghosts and Triton shells, Exp. Cell Res. 151: 160–170.

    Article  PubMed  CAS  Google Scholar 

  • Jinbu, Y., Sato, S., Nakao, T., Nakao, M., Tsukita, S., Tsukita, S., and Ishikawa, H., 1984b, The role of ankyrin in shape and deformability change of human erythrocyte ghosts, Biochim. Biophys. Acta 773: 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Jinbu, Y., Sato, S., and Nakao, M., 1984c, Reversible shape change of Triton treated erythrocyte ghosts induced by Cat+ and Mg-ATP, Nature 307: 376–378.

    Article  PubMed  CAS  Google Scholar 

  • Knowles, W., Marchesi, S. L., and Marchesi, V. T., 1983, Spectrin: Structure, function, and abnormalities, Semin. Hematol. 20: 159–174.

    PubMed  CAS  Google Scholar 

  • Kojima, Y., Nakao, M., Sato, S., and Hara, Y., 1988, Role of spectrin in maintaining shape of red cells, Seikagaku 60: 789 (in Japanese).

    Google Scholar 

  • Lange, Y., Gouch, A., and Steck, T. L., 1982a, Role of the bilayer in the shape of the isolated erythrocyte membrane, J. Membr. Biol. 69: 113–124.

    Article  PubMed  CAS  Google Scholar 

  • Lange, Y., Hadesman, R. A., and Steck, T. L., 1982b, Role of the reticulum in the stability and shape of the isolated human erythrocyte membrane, J. Cell Biol. 92: 714–721.

    Article  PubMed  CAS  Google Scholar 

  • Lin, D. C., and Lin, S., 1978, Actin polymerization induced by a motility-related high-affinity cytochalasin binding complex from erythrocyte membrane, Proc. Natl. Acad. Sci. USA 75: 2345–2349.

    Google Scholar 

  • Ling, E., Danilov, Y. N., and Cohen, C. M., 1988, Modulation of red cell band 4.1 function by cAMP dependent kinase and protein kinase C phosphorylation, J. Biol. Chem. 263: 2209–2216.

    PubMed  CAS  Google Scholar 

  • Litman, D., Hsu, D. J., and Marchesi, V. T., 1980, Evidence that spectrin binds to macromolecular complexes on the linear surface of the red cell membrane, J. Cell Sci. 42: 1–22.

    PubMed  CAS  Google Scholar 

  • Liu, S.-C., and Palek, J., 1979, Metabolic dependence of protein arrangement in human erythrocyte membranes. 2. Cross linking of major proteins in ghosts from fresh and ATP depleted red cells, Blood 54: 1117 1130.

    Google Scholar 

  • Liu, S.-C., and Palek, J., 1980, Spectrin tetramer dimer equilibrium and the stability of erythrocyte membrane skeletons, Nature 285: 586–588.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S.-C., and Palek, J., 1984, Hemoglobin enhances the self-association of spectrin heterodimers in human erythrocytes, J. Biol. Chem. 259: 11556–11562.

    PubMed  CAS  Google Scholar 

  • Liu, S.-C., Fairbanks, G., and Palek, J., 1977, Spontaneous reversible protein cross linking in the human erythrocyte membrane: Temperature and pH dependence, Biochemistry 16: 4066–4074.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S.-C., Palek, J., Prchal, J., and Castleberry, R. P., 1981, Altered spectrin dimer—dimer association and instability of erythrocyte membrane skeletons in hereditary pyropoikilocytosis, J. Clin. Invest. 68: 597605.

    Google Scholar 

  • Liu, S.-C., Windisch, P., Kim, S., and Palek, J., 1984, Oligomeric states of spectrin in normal erythrocyte membranes: Biochemical and electron microscopic studies, Cell 37: 587–594.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S.-C., Zhai, S., Lawler, J., and Palek, J., 1985, Hemin-mediated dissociation of erythrocyte membrane skeletal proteins, J. Biol. Chem. 260: 12234–12239.

    PubMed  CAS  Google Scholar 

  • Liu, S.-C., Derick, L. H., and Palek, J., 1987, Visualization of the hexagonal lattice in the erythrocyte membrane skeleton, J. Cell Biol. 104: 527–536.

    Article  PubMed  CAS  Google Scholar 

  • Lorand, L., Shishido, R., Parameswaran, K. N., and Steck, T. L., 1975, Modification of human erythrocyte ghosts with transglutaminase, Biochem. Biophys. Res. Commun. 67: 1158–1166.

    Article  PubMed  CAS  Google Scholar 

  • Luna, E. J., Kidd, G. H., and Branton, D., 1979, Identification by peptide analysis of the spectrin-binding protein in human erythrocytes, J. Biol. Chem. 254: 2526–2532.

    PubMed  CAS  Google Scholar 

  • Lutz, H. U., Liu, S.-C., and Palek, J., 1977, Release of spectrin-free vesicles from human erythrocytes during ATP depletion. Part 1. Characterization of spectrin-free vesicles, J. Cell Biol. 73: 548–560.

    Article  PubMed  CAS  Google Scholar 

  • Lux, S. E., 1979, Dissecting the red cell membrane skeleton, Nature 281: 426–429.

    Article  PubMed  CAS  Google Scholar 

  • Maruta, H., and Mizuno, D., 1971, Selective recognition of various erythrocytes in endocytosis by mouse peritoneal macrophages, Nature 234: 246–248.

    CAS  Google Scholar 

  • Matsuzaki, F., Sutoh, K., and Ikai, A., 1985, Structural unit of the erythrocyte cytoskeleton. Isolation and electron microscopic examination, Eur. J. Cell Biol. 39: 153–160.

    PubMed  CAS  Google Scholar 

  • Middelkoop, E., Lubin, B. H., Bevers, E. M., Op den Kamp, J. A. F., Comfurius, P., Chiu, D. T.-Y., Zwaal, R. F. A., van Deenen, L. L. M., and Roelofsen, B., 1988, Studies on sickled erythrocytes provide evidence that the asymmetric distribution of phosphatidylserine in the red cell membrane is maintained by both ATP-dependent translocation and interaction with membrane skeletal proteins, Biochim. Biophys. Acta 937: 281–288.

    Article  PubMed  CAS  Google Scholar 

  • Mische, S. M., Mooseker, M. S., and Morrow, J. S., 1987, Erythrocyte adducin: A calmodulin-regulated actin-bundling protein that stimulates spectrin—actin binding, J. Cell Biol. 105: 2837–2845.

    Article  PubMed  CAS  Google Scholar 

  • Mohandas, N., Chasis, J. A., and Shohet, S. T., 1983, The influence of membrane skeleton on red cell deformability, membrane material properties, and shape, Semin. Hematol. 20: 225–242.

    PubMed  CAS  Google Scholar 

  • Morrow, J. S., and Marchesi, V. T., 1981, Self assembly of spectrin oligomers in vitro: A basis for a dynamic cytoskeleton, J. Cell Biol. 88: 463–468.

    Article  PubMed  CAS  Google Scholar 

  • Morrow, J., Haigh, W., and Marchesi, V. T., 1984, Spectrin oligomers in vitro: A structural feature of the erythrocyte cytoskeleton, J. Supramol. Cell Biochem. 1: 275–287.

    Google Scholar 

  • Nakao, K., Wada, T., Kamiyama, T., and Nakao, M., 1962a, Clinical and experimental studies on the post-transfusion viability of the long-term stored erythrocytes, J. Jpn. Int. Soc. 51: 211–219 (in Japanese).

    Article  CAS  Google Scholar 

  • Nakao, K., Wada, T., Kamiyama, T., Nakao, M., and Nagano, K., 1962b, A direct relationship between adenosine triphosphatase-level and in vivo viability of erythrocytes, Nature 194: 877–878.

    Article  PubMed  CAS  Google Scholar 

  • Nako, M., Nakao, T., Tatibana, M., Yoshikawa, H., and Abe, T., 1959, Effect of inosine and adenine on adenosine triphosphate regeneration and shape transformation in long-stored erythrocyte, Biochim. Biophys. Acta 32: 564–565.

    Article  Google Scholar 

  • Nakao, M., Nakao, T., and Yamazoe, S., 1960a, Adenosine triphosphate and maintenance of shape of the human red cells, Nature 187: 945–946.

    Article  PubMed  CAS  Google Scholar 

  • Nakao, M., Nakao, T., Tatibana, M., and Yoshikawa, H., 1960b, Phosphorus metabolism in human erythrocyte. III. Regeneration of adenosine triphosphate in long-stored erythrocyte by incubation with inosine and adenine, J. Biochem. 47: 661–671.

    CAS  Google Scholar 

  • Nakao, M., Nakao, T., Arimatsu, Y., and Yoshikawa, H., 1960c, A new preservative medium maintaining the level of adenosine triphosphate and the osmotic resistance of erythrocyte, Proc. Jpn. Acad. 36: 43–47.

    CAS  Google Scholar 

  • Nakao, M., Nakao, T., Tatibana, M., and Yoshikawa, H., 1960d, Shape transformation of erythrocyte ghosts on addition of adenosine triphosphate to the medium, J. Biochem. 47: 694–695.

    CAS  Google Scholar 

  • Nakao, M., Nakao, T., Tatibana, M., and Yoshikawa, H., 1960e, Phosphorus metabolism in human erythrocyte. IV. Destruction of adenine nucleotides in stored blood, J. Biochem. 48: 672–684.

    CAS  Google Scholar 

  • Nakao, M., Nakao, T., Yamazoe, S., and Yoshikawa, H., 1961, Adenosine triphosphate and shape of erythrocyte, J. Biochem. 49: 487–492.

    PubMed  CAS  Google Scholar 

  • Nakao, M., Motegi, T., Nakao, T., Yamazoe, S., and Yoshikawa, H., 1962a, A positive feedback mechanism of adenosine triphosphate synthesis in erythrocytes, Nature 191: 283–284.

    Article  Google Scholar 

  • Nakao, M., Nakao, T., Yoshikawa, H., Wada, T., Takaku, H., and Nakao, K., 1962b, A new preservative medium containing adenine and inosine, Proc. 8th Congr. Int. Soc. Blood Transf. Tokyo pp. 455–461.

    Google Scholar 

  • Nakao, M., Hoshino, K., and Nakao, T., 1981, Constancy of cell volume during shape change of erythrocytes induced by the increasing ATP content, J. Bioenerg. Biomembr. 13: 307–316.

    Article  PubMed  CAS  Google Scholar 

  • Nakao, M., Nakao, T., Komatsu, Y., Sano, K., and Sasakawa, S., 1983, Isoosmotic sucrose, adenine inosine media for preservation of blood, Biomed. Biochim. Acta 42: 527–535.

    PubMed  CAS  Google Scholar 

  • Nakao, M., Jinbu, Y., Sato, S., Ishigami, Y., Nakao, T., Ito-Ueno, E., and Wake, K., 1987, Structure and function of red cell cytoskeleton, Biomed. Biochim. Acta 46: 5–9.

    Google Scholar 

  • Nakao, T., Nagano, K., Adachi, K., and Nakao, M., 1964, Separation of two adenosine triphosphatase from erythrocyte membranes, Biochem. Biophys. Res. Commun. 13: 444–448.

    Article  Google Scholar 

  • Nakao, T., Nagai, F., and Nakao, M., 1982, Posttransfusion viability of rabbit erythrocytes preserved in a medium containing inosine, adenine, and isoosmotic sucrose, Vox Sang. 42: 217–222.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, K., and Beutler, E., 1979, Comparison of structure and function of human erythrocyte and human actin, Proc. Natl. Acad. Sci. USA 76: 935–938.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, W. J., and Veshnock, P. J., 1987, Ankyrin binding to (Na+ + K+)ATPase and implications for the organization of membrane domains in polarized cells, Nature 328: 533–536.

    Article  PubMed  CAS  Google Scholar 

  • Ohanian, V., Wolfe, L. C., John, K. M., Pinder, J. C., Lux, S. E., and Gratzer, W. B., 1984, Analysis of the ternary interaction of the red cell membrane skeletal proteins spectrin, actin, and 4.1, Biochemistry 23: 4416–4420.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, T., 1962, Extraction of actin-and myosin-like proteins from erythrocyte membrane, J. Biochem. 52: 307–308.

    PubMed  CAS  Google Scholar 

  • Palek, J., and Lux, S. E., 1983, Red cell membrane skeletal defects on the red cell deformability, membrane material properties and shape, Semin. Haematol. 189: 225–240.

    Google Scholar 

  • Palek, J., Curby, W. A., and Lionetti, F. J., 1971a, Effects of calcium and ATP on volume of human red cell ghosts, Am. J. Physiol. 220: 19–26.

    PubMed  CAS  Google Scholar 

  • Palek, J., Curby, W. A., and Lionetti, F. J., 1971b, Relation of calcium ion activated ATPase to calcium ion linked shrinkage of human red cell ghosts, Am. J. Physiol. 220: 1028–1032.

    PubMed  CAS  Google Scholar 

  • Palek, J., Curby, W. A., and Lionetti, F. J., 1972, Size dependence of ghosts from stored erythrocytes on calcium and ATP, Blood 40: 261–275.

    PubMed  CAS  Google Scholar 

  • Palek, J., Stewart, G., and Lionetti, F. J., 1974, The dependence of shape of human erythrocyte ghosts on calcium, magnesium and ATP, Blood 44: 583–597.

    PubMed  CAS  Google Scholar 

  • Palek, J., Liu, P. A., and Liu, S.-C., 1978a, Polymerization of red cell membrane protein contributes to spheroechinocyte shape irreversibility, Nature 274: 505–507.

    Article  PubMed  CAS  Google Scholar 

  • Palek, J., Liu, S.-C., and Snyder, L. M., 1978b, Metabolic dependence of protein arrangement in human erythrocyte membranes. Part 1. Analysis of spectrin-rich complexes in ATP depleted red cells, Blood 51: 385–396.

    PubMed  CAS  Google Scholar 

  • Pasternack, F. R., Anderson, R. A., Leto, T. L., and Marchesi, V. T., 1985, Interactions between protein 4.1 and band 3, J. Biol. Chem. 260: 3676–3683.

    PubMed  CAS  Google Scholar 

  • Patel, V. P., and Fairbanks, G., 1981, Spectrin phosphorylation and shape changes of human erythrocyte ghosts, J. Cell Biol. 88: 430–440.

    Article  PubMed  CAS  Google Scholar 

  • Patel, V. P., and Fairbanks, G., 1986, Relationship of major phosphorylation reactions and Mg-ATPase activities to ATP-dependent shape change of human erythrocyte membranes, J. Biol. Chem. 261: 3170–3177.

    PubMed  CAS  Google Scholar 

  • Pinder, J. C., and Gratzer, W. B., 1983, Structural and dynamic states of actin in the erythrocyte, J. Cell Biol. 96: 768–775.

    Article  PubMed  CAS  Google Scholar 

  • Pinder, J., Ungewickell, E., Bray, D., and Gratzer, W. B., 1978, The spectrin actin complex and erythrocyte shape, J. Supramol. Struct. 8: 435–445.

    Article  Google Scholar 

  • Quist, E. E., 1980, Regulation of erythrocyte membrane shape by Cat+, Biochem. Biophys. Res. Commun. 92: 631–637.

    Article  PubMed  CAS  Google Scholar 

  • Quist, E. E., and Reece, K. L., 1980, The role of diphosphatidylinositol in erythrocyte membrane shape regulation, Biochem. Biophys. Res. Commun. 95: 1023–1030.

    Article  PubMed  CAS  Google Scholar 

  • Sato, S., and Nakao, M., 1981, Cross-linking of intact erythrocyte membrane with a newly synthesized cleavable bifunctional reagent, J. Biochem. 90: 1177–1185.

    PubMed  CAS  Google Scholar 

  • Sato, S., and Nakao, M., 1986, Characterization of human erythrocytes cytoskeletal ATPase, J. Biochem. 100: 643–649.

    PubMed  CAS  Google Scholar 

  • Sato, S., and Ohnishi, S., 1983, Interaction of a peripheral protein of the erythrocyte membrane, band 4.1 with phosphatidylserine-containing liposome and erythrocyte inside-out vesicles, Eur. J. Biochem. 130: 19–25.

    Article  PubMed  CAS  Google Scholar 

  • Seigneuret, M., and Devaux, P. F., 1984, ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: Relation to shape changes, J. Cell Biol. 81: 3751–3755.

    CAS  Google Scholar 

  • Shahbakhti, F., and Gratzer, W. B., 1986, Analysis of the self-association of human red cell spectrin, Biochemistry 25: 5969–5975.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, A. L., Vinuera, E., and Maizel, J. V., 1967, Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polycarbonate gels, Biochem. Biophys. Res. Comm. 28: 815–821.

    Article  PubMed  CAS  Google Scholar 

  • Sheetz, M. P. 1983, Membrane skeletal dynamics: Role in modulation of red cell deformability, mobility of transmembrane proteins, and shape, Semin. Hematol. 20: 175–188.

    PubMed  CAS  Google Scholar 

  • Sheetz, M. P., and Singer, S. J., 1974, Biological membranes as bilayer couples. A molecular mechanism of drug-induced interactions, Proc. Natl. Acad. Sci. USA 71: 4457–4461.

    Article  PubMed  CAS  Google Scholar 

  • Sheetz, M. P., and Singer, S. J., 1977, On the mechanism of ATP-induced shape changes in human erythrocyte membranes. I. The role of the spectrin complex, J. Cell Biol. 73: 638–696.

    Article  PubMed  CAS  Google Scholar 

  • Shen, B. W., Josephs, R., and Steck, T. L., 1984, Ultrastructure of unit fragments of the skeleton of the human erythrocyte membrane, J. Cell Biol. 99: 810–821.

    Article  PubMed  CAS  Google Scholar 

  • Shen, B. W., Josephs, R., and Steck, T. L., 1986, Ultrastructure of the intact skeleton of the human erythrocyte membrane, J. Cell Biol. 102: 997–1006.

    Article  PubMed  CAS  Google Scholar 

  • Shotton, D. M., Burke, B. E., and Branton, D., 1979, The molecular structure of human erythrocyte spectrin. Biophysical and electron microscopic studies, J. Mol. Biol. 131: 303–320.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, D. L., and Branton, D., 1985, Partial purification and characterization of an actin-bundling protein, band 4.9, from human erythrocytes, J. Cell Biol. 100: 775–785.

    Article  PubMed  CAS  Google Scholar 

  • Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membrane, Science 175: 720–731.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. K., and Palek, J., 1982, Modulation of lateral mobility of band 3 in the red cell membrane by oxidative cross linking of spectrin, Nature 297: 424–425.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. K., and Palek, J., 1983, Sulthydryl reagents induce altered spectrin self association skeletal instability and increased thermal sensitivity of red cells, Blood 62: 1190–1196.

    PubMed  CAS  Google Scholar 

  • Sobue, K., Muramoto, Y., Fujita, M., and Kakiuchi, S., 1982, Calmodulin binding protein of erythrocyte cytoskeleton, Biochem. Biophys. Res. Commun. 100: 1063–1068.

    Article  Google Scholar 

  • Speicher, D. W., and Marchesi, V. T., 1984, Erythrocyte spectrin is composed of many homologous triple helical segments, Nature 311: 177–180.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, Y., Elmer, L., Davis, J., Bennett, V., and Angelides, K., 1988, Ankyrin and spectrin associate with voltage-dependent sodium channels in brain, Nature 333: 177–180.

    Article  PubMed  CAS  Google Scholar 

  • Steck, T. L., Weinstein, R. S., Straus, J. H., and Wallach, D. F. H., 1970, Inside-out red cell membrane vesicles preparation and purification, Science 168: 255–257.

    Article  PubMed  CAS  Google Scholar 

  • Steck, T. L., Rams, B., and Strapazon, E., 1976, Proteolytic dissection of band 3, predominant polypeptide of the human erythrocyte membrane, Biochemistry 15: 1154–1161.

    Article  CAS  Google Scholar 

  • Steiner, J. P., and Bennett, V., 1988, Ankyrin-independent membrane protein-binding sites for brain and erythrocyte spectrin, J. Biol. Chem. 263: 11417–11425.

    Google Scholar 

  • Stromqvist, M., Berglund, A., Shanbhag, V. P., and Backman, L., 1988, Influence of calmodulin on the human red cell membrane skeleton, Biochemistry 27: 1104–1110.

    Article  PubMed  CAS  Google Scholar 

  • Takakuwa, Y., Tchemia, G., Rossi, M., Benabadji, M., and Mohandas, N., 1986, Restoration of normal membrane stability of unstable protein 4.1-deficient erythrocyte membranes by incorporation of purified protein 4.1, J. Clin. Invest. 78: 80–85.

    Article  PubMed  CAS  Google Scholar 

  • Teitel, P., 1965, Disk—sphere transformation and plasticity alteration of red blood cells, Nature 26: 409–410.

    Article  Google Scholar 

  • Tsuji, A., Kawasaki, K., and Ohnishi, S., 1988, Regulation of band 3 mobilities in erythrocyte ghost membranes by protein association and cytoskeletal meshwork, Biochemistry 27: 7447–7452.

    Article  PubMed  CAS  Google Scholar 

  • Tsukita, S., Tsukita, S., and Ishikawa, H., 1980, Cytoskeletal network underlying the human erythrocyte membrane: Thin-section electron microscopy, J. Cell Biol. 85: 567–576.

    Article  PubMed  CAS  Google Scholar 

  • Tsukita, S., Tsukita, S., Ishikawa, H., Sato, S., and Nakao, M., 1981, Electron microscopic study of reassociation of spectrin and actin with the human erythrocyte membrane, J. Cell Biol. 90: 70–77.

    Article  PubMed  CAS  Google Scholar 

  • Tyler, J. M., Hargreaves, W. R., and Branton, D., 1979, Purification of two spectrin-binding proteins: Biochemical and electron microscopic evidence for site-specific reassociation between spectrin and bands 2.1 and 4.1, Proc. Natl. Acad. Sci. USA 76: 5192–5196.

    Article  PubMed  CAS  Google Scholar 

  • Tyler, J., Reinhardt, B., and Branton, D., 1980, Associations of erythrocyte membrane proteins binding of purified bands 2.1 and 4.1 to spectrin, J. Biol. Chem. 255: 7034–7039.

    PubMed  CAS  Google Scholar 

  • Ueno, E., Sato, S., Jinbu, Y., and Nakao, M., 1987, Dynamic association of band 3 with Triton shells in human erythrocyte ghosts, Biochim. Biophys. Acta 915: 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Ungewickell, E., Bennett, P., Calvert, R., Ghanian, V., and Gratzer, W. B., 1979, In vitro formation of complex between cytoskeletal proteins of human erythrocytes, Nature 280: 811–814.

    Article  PubMed  CAS  Google Scholar 

  • Wada, T., Takaku, F., Nakao, K., Nakao, M., Nakao, T., and Yoshikawa, H., 1960, Posttransfusion survival of the red blood cells stored in a medium containing adenine and inosine, Proc. Jpn. Acad. 36: 618–623.

    CAS  Google Scholar 

  • Weed, R. I., LaCelle, P. L., and Merrill, E. W., 1969, Metabolic dependence of red cell deformability, J. Clin. Invest. 48: 795–809.

    Article  CAS  Google Scholar 

  • White, J. G., 1974, Effects of an ionophore A23187 on the surface morphology of normal erythrocytes, Am. J. Pathol. 77: 507–514.

    PubMed  CAS  Google Scholar 

  • Wolf, M., and Sahyoun, N., 1986, Protein kinase C and phosphatidylserine bind to MT110,000/115,000 polypeptides enriched in cytoskeletal and postsynaptic density preparations, J. Biol. Chem. 261: 13327-13332.

    Google Scholar 

  • Wong, A. J., Kiehart, D. P., and Pollard, T. D., 1985, Myosin from human erythrocytes, J. Biol. Chem. 260: 46–49.

    PubMed  CAS  Google Scholar 

  • Yu, J., and Goodman, S. R., 1979, Syndeins: The spectrin-binding(s) of the human erythrocyte membrane, J. Proc. Natl. Acad. Sci. USA 76: 2340–2344.

    Article  CAS  Google Scholar 

  • Yu, J., Fishman, D. A., and Steck, T. L., 1973, Selective solubilization of proteins and phospholipids from red cell membranes by nonionic detergents, J. Supramol. Struct. 1: 233–248.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nakao, M. (1990). Function and Structure of the Red Blood Cell Cytoskeleton. In: Harris, J.R. (eds) Erythroid Cells. Blood Cell Biochemistry, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9528-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9528-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9530-1

  • Online ISBN: 978-1-4757-9528-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics