Skip to main content

Maturational Breakdown of Mitochondria and Other Organelles in Reticulocytes

  • Chapter

Part of the book series: Blood Cell Biochemistry ((BLBI,volume 1))

Abstract

One of the characteristics of the differentiation of erythroid cells is the decay or elimination of organelles, including the nucleus, mitochondria, ribosomes, lysosomes, endoplasmic reticulum, and Golgi apparatus. Many of the changes occur in the nucleated precursors of the erythrocyte. Some organelles, however, primarily mitochondria and ribosomes, but also vestiges of others, remain in the reticulocyte. The mechanisms involved in the degradation of organelles are largely unexplored. The process best understood is the maturational breakdown of mitochondria in reticulocytes, which will therefore be the focus of the present review. The various changes appear to constitute a fixed program of maturation that once started takes it course with little or no outside effectors. The interplay of the various events and their causal relationships are open questions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi, K., Nagano, K., Nakao, T., and Nakao, M., 1964, Purification and characterization of ribonuclease from rabbit reticulocytes, Biochim. Biophys. Acta 92: 59–70.

    PubMed  CAS  Google Scholar 

  • Andree, H. H., Bretschneider, K., Thiele, B. J., and Rapoport, S. M., 1980, Breakdown of ribosomal RNA in rabbit reticulocytes, Acta Biol. Med. Ger. 39: 995–1006.

    PubMed  CAS  Google Scholar 

  • Antonioli, J. A., and Christensen, H. N., 1969, Differences in schedules of regression of transport systems during reticulocyte maturation, J. Biol. Chem. 244: 1505–1509.

    PubMed  CAS  Google Scholar 

  • Arrigo, A. P., Tanaka, K., Goldberg, A. L., and Welch, W. J., 1988, Identity of the 19S “prosome” particle with the large multifunctional protease complex of mammalian cells (the proteasome), Nature 331: 19 2194.

    Google Scholar 

  • Augustin, H. W., and Rapoport, S. M., 1959, Über Atmung und Succinatoxydasesystem bei reifen und jugendlichen Hühner-erythrocyten, Acta Biol. Med. Ger. 3: 433–449.

    PubMed  CAS  Google Scholar 

  • Augustin, H. W., Häcker, M. R., and Hofmann, E., 1964, Aufnahme und Phosphorylierung von 2-Desoxy-Dglucose in Kaninchen-erythrocyten und -reticulocyten Hoppe-Seyler’s Z. Physiol. Chem. 339: 42–58.

    PubMed  CAS  Google Scholar 

  • Augustin, H. W., Zborowski, J., Baranska, J., Wiswedel, I., and Wojtczak, L., 1977, Synthesis of phospholipids in mitochondria and other membrane fractions of rabbit reticulocytes, Biochim. Biophys. Acta 489: 298–306.

    Google Scholar 

  • Balcarek, J. M., Theisen, T. W., Cook, M. N., Varrichio, A., Hwang, S. M., Strohsacker, M. W., and Crooke, S. T., 1988, Isolation and characterization of a cDNA clone encoding rat 5-lipoxygenase, J. Biol. Chem. 263: 13937–13941.

    PubMed  CAS  Google Scholar 

  • Belkner, J., and Rapoport, S. M., 1989, Approaches to characterize by density-fractionation age-dependent properties of reticulocyte mitochondria, Biomed. Biochim. Acta 48: 3–11.

    PubMed  CAS  Google Scholar 

  • Belkner, J., Kühn, H., and Wiesner, R., 1990, Oxygenation of biological membranes by the reticulocyte lipoxygenase. Lack of stoichiometry between oxygen uptake and product formation, Biomed. Biochim. Acta 49: S31 — S34.

    PubMed  CAS  Google Scholar 

  • Bessis, M., 1973, Living Blood Cells and Their Ultrastructure, Springer, Berlin.

    Google Scholar 

  • Borgeat, P., Nadeau, M., Salari, H., Poubelle, P., and Fruteau de Laclos, B., 1985, Leukotrienes: Biosynthesis, metabolism, and analysis, Adv. Lipid Res. 21: 47–77.

    PubMed  CAS  Google Scholar 

  • Brodsky, F. M., 1988, Living with clathrin. Its role in intracellular membrane traffic, Science 24: 1396–1402.

    Google Scholar 

  • Brown-Luedi, M. L., Meyer, L. J., Milburn, S. C., Mo-Ping Yau, P., Corbett, S., and Hershey, J. W. B., 1982, Protein synthesis initiation factors from human HeLa cells and rabbit reticulocytes are similar: Comparison of protein structure, activities, and immunochemical properties, Biochemistry 21: 4202–4206.

    PubMed  CAS  Google Scholar 

  • Bryant, R. W., Bailey, J. M., Schewe, T., and Rapoport, S. M., 1982, Positional specificity of a reticulocyte lipoxygenase. Conversion of arachidonic acid to 15S-hydroperoxyeicosatetraenoic acid, J. Biol. Chem. 257: 6050–6055.

    PubMed  CAS  Google Scholar 

  • Bryant, R. W., Schewe, T., Rapoport, S. M., and Bailey, J. M., 1985, Leukotriene formation by a purified reticulocyte lipoxygenase enzyme. Conversion of arachidonic acid and 15-hydroperoxyeicosatetraenoic acid to 14,15-leukotriene A4, J. Biol. Chem. 260: 3548–3555.

    PubMed  CAS  Google Scholar 

  • Burka, E. R., 1969, Characteristics of RNA degradation in the erythroid cell, J. Clin. Invest. 48: 1266–1272.

    PubMed  CAS  Google Scholar 

  • Carvalho, M., Carvalho, J. F., and Merrick, W. C., 1984, Biological characterization of various forms of elongation factor 1 from rabbit reticulocytes, Arch. Biochem. Biophys. 234: 603–611.

    PubMed  CAS  Google Scholar 

  • Ciechanover, A., Heller, H., Elias, S., Haas, A. L., and Hershko, A., 1980, ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation, Proc. Natl. Acad. Sci. USA 77: 1365–1368.

    PubMed  CAS  Google Scholar 

  • Ciechnover, A., Wolin, S. L., Steitz, J. A., and Lodish, H. F., 1985, Transfer RNA is an essential component f the ubiquitin-and ATP-dependent proteolytic system, Proc. Natl. Acad. Sci. USA 82: 1341–1345.

    Google Scholar 

  • Ciechanover, A., Ferber, S., Dvorah, G., Elias, S., Hershko, A., and Arfin, S., 1988, Purification and haracterization of arginyl-tRNA-protein transferase from rabbit reticulocytes, J. Biol. Chem. 263: 11155 — 11167.

    PubMed  CAS  Google Scholar 

  • Coutelle, C., Rosenthal, S., Gross, J., David, H., and Uerlings, I., 1973, Leitkriterien der Retikulozytenreifung, VI. Verhalten der RNS and Retikulozytenwerte sowie des Ribosomengehaltes in peripheren erythroiden Zellpopulationen verschiedener Dichte im Verlaufe einer Entblutungsanämie beim Kaninchen, Acta Biol. Med. Ger. 31: 781–794.

    PubMed  CAS  Google Scholar 

  • Danon, D., Zehavi-Willner, T., and Berman, C. R., 1965, Alterations in polyribosomes of reticulocytes maturing in vivo, Proc. Natl. Acad. Sci. USA 54: 873–879.

    PubMed  CAS  Google Scholar 

  • Davis, J. Q., Danserau, D., Johnstone, R. M., and Bennet, V., 1986, Selective externalization of an ATP-binding protein structurally related to the clathrin-uncoating ATPase/heat shock protein in vesicles containing terminal transferrin receptors during reticulocyte maturation, J. Biol. Chem. 261: 15368–15371.

    PubMed  CAS  Google Scholar 

  • DeBellis, R. H., 1969, Fate of reticulocyte ribosomes during in vivo maturation, Biochemistry 8: 3451–3454.

    PubMed  CAS  Google Scholar 

  • Dixon, R. A. F., Jones, R. E., Diehl, R. E., Bennett, C. D., Karoman, S,. and Rouzer, C. A., 1988, Cloning of the cDNA for human 5-lipoxygenase, Proc. Natl. Acad. Sci. USA 85: 416–420.

    CAS  Google Scholar 

  • Driscoll, J., and Goldberg, A. L., 1989, Skeletal muscle proteasome can degrade proteins in an ATP-dependent process that does not require ubiquitin, Proc. Natl. Acad. Sci. USA 86: 787–791.

    PubMed  CAS  Google Scholar 

  • Dubiel, W., Müller, M., and Rapoport, S. M., 1981a, ATP-dependent proteolysis of reticulocyte mitochondria is preceded by the attack of lipoxygenase, Biochem. Int. 3: 165–171.

    CAS  Google Scholar 

  • Dubiel, W., Müller, M., Rathmann, J., Hiebsch, C., and Rapoport, S. M., 1981b, Determination and characteristics of energy-dependent proteolysis in rabbit reticulocytes, Acta Biol. Med. Ger. 40: 625–628.

    PubMed  CAS  Google Scholar 

  • Dubiel, W., Müller, M., and Rapoport, S. M., 1986, Kinetics of 125I-ubiquitin conjugation with and liberation from rabbit reticulocyte stroma, FEBS Lett. 194: 50–55.

    PubMed  CAS  Google Scholar 

  • Dubiel, W., Drung, I., Müller, M., and Rapoport, S. M., 1987a, Effect of substrate heat-denaturation on ATP-and ubiquitin-dependent proteolysis, Biomed. Biochim. Acta 46: 159–164.

    PubMed  CAS  Google Scholar 

  • Dubiel, W., Drung, I., Müller, M., and Rapoport, S. M., 1987b, Kinetic studies on the ATP- and ubiquitindependent proteolytic system of reticulocytes, Biomed. Biochim. Acta 46: 565–570.

    PubMed  CAS  Google Scholar 

  • Dubiel, W., Drung, I., Müller, M., and Rapoport, S. M., 1988, The effects of substrate denaturation and tRNA on the ATP- and ubiquitin-dependent proteolytic system of reticulocytes, Biol. Zentralblatt 107: 93–96

    CAS  Google Scholar 

  • Etlinger, J. D., and Goldberg, A. L., 1980, Control of protein degradation in reticulocytes and reticulocyte extracts by hemin, J. Biol. Chem. 255: 4563–4568.

    PubMed  CAS  Google Scholar 

  • Farkas, W., and Marks, P. A., 1968, Partial purification and properties of a ribonuclease from rabbit reticulocytes, J. Biol. Chem. 243: 6464–6473.

    PubMed  CAS  Google Scholar 

  • Ferber, S., and Ciechanover, A., 1986, Transfer RNA is required for conjugation of ubiquitin to selective substrates of the ubiquitin-and ATP-dependent proteolytic system, J. Biol. Chem. 261: 3128–3134.

    PubMed  CAS  Google Scholar 

  • Ferber, S., and Ciechanover, A., 1987, Role of arginine-tRNA in protein degradation by the ubiquitin pathway, Nature 326: 808–810.

    PubMed  CAS  Google Scholar 

  • Fiskum, G., Bryant, R. W., Low, C.-E., Pease, A., and Bailey, J. M., 1985, Lipoxygenation of mitochondrial membranes by reticulocyte lipoxygenase, in: Prostaglandins, Leukotrienes, and Lipoxins: Biochemistry, Mechanism of Action, and Clinical Applications (J. M. Bailey, ed.), pp. 87–95, Plenum Press, New York.

    Google Scholar 

  • Fleming, J., Thiele, B. J., Chester, J., O’Prey, J., Janetzki, S., Aitken, A., Anton, I. A., Rapoport, S. M., and Harrison, P. R., 1989, The complete sequence of the rabbit erythroid cell-specific 15-lipoxygenase mRNA: Comparison of the predicted amino acid sequence of the RBC lipoxygenase with other lipoxygenases, Gene 79: 181–188.

    PubMed  CAS  Google Scholar 

  • Freudenberg, H., and Mager, J., 1971, Studies on the mechanism of the inhibition of protein synthesis induced by intracellular ATP depletion, Biochim. Biophys. Acta 232: 537–555.

    PubMed  CAS  Google Scholar 

  • Furakawa, M., Yoshimoto, T., Ochi, K., and Yamamoto, S., 1984, Studies on arachidonate 5-lipoxygenase of rat basophilic leukemia cells, Biochim. Biophys. Acta 795: 458–465.

    Google Scholar 

  • Ganoth, D., Leshinsky, E., Eytan, E., and Hershko, A., 1988, A multicomponent system that degrades proteins conjugated to ubiquitin: Resolution of factors and evidence for ATP-dependent complex formation, J. Biol. Chem. 263: 12412–12419.

    PubMed  CAS  Google Scholar 

  • Gasko, O., and Danon, D., 1972, Deterioration and disappearance of mitochondria during reticulocyte maturation, Exp. Cell Res. 75: 159–169.

    PubMed  CAS  Google Scholar 

  • Geiduschek, J. B., and Singer, S. J., 1979, Molecular changes in the membranes of mouse erythroid cells accompanying differentiation, Cell 16: 149–163.

    PubMed  CAS  Google Scholar 

  • Goldberg, A. L., and St. John, A. C., 1976, Intracellular protein degradation in mammalian and bacterial cells, Annu. Rev. Biochem. 45: 747–803.

    CAS  Google Scholar 

  • Glowacki, E. R., and Millette, R. L., 1965, Polyribosomes and the loss of hemoglobin synthesis in the maturing reticulocytes, J. Mol. Biol. 11: 116–127.

    PubMed  CAS  Google Scholar 

  • Goto, S., and Mizuno, D., 1971, Degradation of RNA in rat reticulocytes. Purification and properties of rat reticulocyte RNase, Arch. Biochem. Biophys. 145: 64–70.

    PubMed  CAS  Google Scholar 

  • Greksch, G., Wiswedel, I., and Augustin, W., 1973, Enzymatic characterization of rabbit reticulocyte mitochondria in: Abhandlungen der Akademie der Wissenschaften der DDR, pp. 587–599, Akademie-Verlag, Berlin.

    Google Scholar 

  • Haas, A. L., and Bright, P. M., 1985, The immunochemical detection and quantitation of intracellular ubiquitin—protein conjugates, J. Biol. Chem. 260: 12464–12473.

    PubMed  CAS  Google Scholar 

  • Haas, A. L., and Rose, I. A., 1981, Hemin inhibits ATP-dependent ubiquitin-dependent proteolysis: Role of hemin in regulating ubiquitin conjugate degradation, Proc. Natl. Acad. Sci. USA 78: 6845–6848.

    PubMed  CAS  Google Scholar 

  • Harding, C., Heuser, J., and Stahl, P., 1983, Receptor-mediated endocytosis and recycling of the transferrin receptor in rat reticulocytes, J. Cell Biol. 97: 324–339.

    Google Scholar 

  • Harding, C., Heuser, J., and Stahl, P., 1984, Endocytosis and intracellular processing of transferrin and colloidal gold transferrin in rat reticulocytes, Eur. J. Cell Biol. 35: 256–263.

    PubMed  CAS  Google Scholar 

  • Harris, E. D., and Johnson, C. A., 1969, Incorporation of glucosamine-14C into membrane proteins of reticulocytes, Biochemistry 8: 512–515.

    PubMed  CAS  Google Scholar 

  • Harrison, P. R., Frampton, J., Chambers, I., Kasturi, K., Thiele, B., Conkie, D., Fleming, J., Chester, J., O’Prey, J., and McBain, W., 1987, Analysis of erythroid cell-specific gene expression, in: Molecular and Cellular Aspects of Erythropoietin and Erythropoiesis (I. N. Rich, ed.), pp. 37–50, Springer-Verlag, Berlin.

    Google Scholar 

  • Härtel, B., Ludwig, P., Schewe, T., and Rapoport, S. M., 1982, Self-inactivation by 13-hydroperoxylinoleic acid and lipohydroperoxidase activity of the reticulocyte lipoxygenase, Eur. J. Biochem. 126: 353–357.

    PubMed  Google Scholar 

  • Hershko, A., and Ciechanover, A., 1982, Mechanisms of intracellular protein breakdown, Annu. Rev. Biochem. 51: 335–364.

    PubMed  CAS  Google Scholar 

  • Hershko, A., Leshinsky, A., Ganoth, D., and Heller, H., 1984a, ATP-dependent degradation of ubiquitinprotein conjugates, Proc. Natl. Acad. Sci. USA 81: 1619–1623.

    PubMed  CAS  Google Scholar 

  • Hershko, A., Heller, H., Eytan, E., Kaklij, G., and Rose, I. A., 1984b, Role of the a-amino group of protein in ubiquitin-mediated protein breakdown, Proc. Natl. Acad. Sci. USA 81: 7021–7025.

    PubMed  CAS  Google Scholar 

  • Heynen, M. J., and Verwilghen, R. L., 1982, A quantitative ultrastructural study of normal rat erythroblasts and reticulocytes, Cell Tissue Res. 224: 397–408.

    PubMed  CAS  Google Scholar 

  • Höhne, M., Bayer, D., Prehn, S., Schewe, T., and Rapoport, S. M., 1983, In vitro maturation of rabbit reticulocytes. III. Response of lipoxygenase, Biomed. Biochim. Acta 42: 1129–1134.

    PubMed  Google Scholar 

  • Höhne, M., Thiele, B. J., Prehn, S., Giessmann, E., Nack, B., and Rapoport, S. M., 1988, Activation of translationally inactive lipoxygenase mRNP particles from rabbit reticulocytes, Biomed. Biochim. Acta 47: 75–78.

    Google Scholar 

  • Holt, G. D., Haltiwanger, R. S., Tones, C. R., and Hart, G. W., 1987, Erythrocytes contain cytoplasmic glycoproteins. 0-linked G1cNAc on band 4.1, J. Biol. Chem. 262: 14847–14850.

    PubMed  CAS  Google Scholar 

  • Hough, R., Pratt, G., and Rechsteiner, M., 1986, Ubiquitin—lysozyme conjugates: Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates, J. Biol. Chem. 261: 2400–2408.

    PubMed  CAS  Google Scholar 

  • Hough, R., Pratt, G., and Rechsteiner, M., 1987, Purification of two high molecular weight proteases from rabbit reticulocyte lysate, J. Biol. Chem. 262: 8303–8313.

    PubMed  CAS  Google Scholar 

  • Inaba, M., and Maede, Y., 1986, Na,K-ATPase in dog red cells. Immunological identification and maturation-associated degradation by the proteolytic system, J. Biol. Chem. 261: 16099–16105.

    PubMed  CAS  Google Scholar 

  • Ishiura, S., and Sugita, H., 1986, Ingensin, a high-molecular mass alkaline protease from rabbit reticulocyte, J. Biochem. 100: 753–763.

    PubMed  CAS  Google Scholar 

  • Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L., and Turbide, C., 1987, Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes), J. Biol. Chem. 262: 9412–9420.

    PubMed  CAS  Google Scholar 

  • Knopf, P. M., and Lamfrom, H., 1965, Changes in the ribosome distribution during incubation of rabbit reticulocytes in vitro, Biochim. Biophys. Acta 95: 398–407.

    PubMed  CAS  Google Scholar 

  • Kobayashi, T., and Levine, L., 1983, Arachidonic acid metabolism by erythrocytes, J. Biol. Chem. 258: 91169121.

    Google Scholar 

  • Kostie, M. M., and Rapoport, S. M., 1989, Maturation-dependent changes of the rabbit reticulocyte energy metabolism, FEBS Lett. 250: 400–441.

    Google Scholar 

  • Krause, W., David, H., Uerlings, I., and Rosenthal, S., 1972, Veränderungen der Mitochondrien-Ultrastruktur von Kaninchenretikulozyten im Reifungsprozeß, Acta Biol. Med. Ger. 28: 779–786.

    PubMed  CAS  Google Scholar 

  • Kroschwald, P., Kroschwald, A., Wiesner, R., Schewe, T., and Kuhn, H., 1986, The occurrence of a lipoxygenase pathway in reticulocytes of various species, Biomed. Biochim. Acta 45: 1237–1247.

    PubMed  CAS  Google Scholar 

  • Kroschwald, P., Kroschwald, A., Kuhn, H., Ludwig, P., Thiele, B. J., Höhne, M., Schewe, T., and Rapoport, S. M., 1989a, Occurrence of the erythroid cell-specific arachidonate 15-lipoxygenase in human reticulocytes, Biochem. Biophys. Res. Commun. 160: 954–960.

    PubMed  CAS  Google Scholar 

  • Kühn, H., and Brash, A. R., 1990, Occurrence of lipoxygenase products in membranes of rabbit reticulocytes. Evidence for a role of the reticulocyte lipoxygenase in the maturation of red cells, J. Biol. Chem. 265: 1454–1458.

    PubMed  Google Scholar 

  • Kühn, H., Belkner, J., and Wiesner, R., 1990a, Metabolism of polyenoic fatty acids by rabbit reticulocytes. Intracellular action of the erythroid lipoxygenase on membrane lipids, Biomed. Biochim. Acta 49: S25–30.

    PubMed  Google Scholar 

  • Kühn, H. Belkner, J., and Wiesner, R., 1990b, Subcellular distribution of lipoxygenase products in rabbit reticulocyte membranes, Eur. J. Biochem.,in press.

    Google Scholar 

  • Kühn, H., Belkner, J., Wiesner, R., and Alder, L., 1990c, Occurrence of 9- and 13-keto octadecadienoic acid in biological membranes oxygenated by the reticulocyte lipoxygenase, Arch. Biochem. Biophys. in press.

    Google Scholar 

  • Kühn, H., Wiesner, R., and Schewe, T., 1990d, Formation of oxygenase and hydroperoxidase products by the pure reticulocyte lipoxygenase, Biomed. Biochim. Acta 49: S39 — S41.

    PubMed  Google Scholar 

  • Kühn, H., Wiesner, R., Schewe, T., and Rapoport, S. M., 1983a, Reticulocyte lipoxygenase exhibits both n-6 and n-9 activities, FEBS Lett. 153: 353–356.

    PubMed  Google Scholar 

  • Kühn, H., Pliquett, F., Wunderlich, S., Schewe, T., and Krause, W., 1983b, Reticulocyte lipoxygenase changes the passive electric properties of bovine heart submitochondrial particles, Biochim. Biophys. Acta 735: 283290.

    Google Scholar 

  • Kühn, H., Schewe, T., and Rapoport, S. M., 1986a, The stereo chemistry of the reactions of lipoxygenases and their metabolites. Proposed nomenclature of lipoxygenases and related enzymes, Enzymol. Relat. Areas Mol. Biol. 58: 273–311.

    Google Scholar 

  • Kühn, H., Salzmann-Reinhardt, U., Ludwig, P., Pönicke, K., Schewe, T., and Rapoport, S. M., 1986b, Thestoichiometry of oxygen uptake and conjugated diene formation during the dioxygenation of linoleic acid by the pure reticulocyte lipoxygenase. Evidence for aerobic hydroperoxidase activity, Biochim. Biophys. Acta 876: 187–193.

    PubMed  Google Scholar 

  • Kühn, H., Wiesner, R., Alder, L., Fitzsimmons, B. S., Rokach, J., and Brash, A. R., 1987, Formation of lipoxin B by the pure reticulocyte lipoxygenase via sequential oxygenation of the substrate, Eur. J. Biochem. 169: 593–601.

    PubMed  Google Scholar 

  • Kühn, H., Wiesner, R., Belkner, J., and Alder, L., 1989, Occurrence of 9- and 13-ketooctadecadienoic acid in biological membranes oxygenated by the reticulocyte lipoxygenase, Arch. Biochem. Biophys.,in press. Lodish, H. F., and Small, B., 1976, Different lifetimes of reticulocyte messenger RNA, Cell 7:59–65.

    Google Scholar 

  • Ludwig, P., Holzhütter, H.-G., Colosimo, A., Silvestrini, M. C., Schewe, T., and Rapoport, S. M., 1987, A kinetic model for lipoxygenases based on experimental data with the lipoxygenase of reticulocytes, Eur. J. Biochem. 168: 325–337.

    PubMed  CAS  Google Scholar 

  • Ludwig, P. Höhne, M., Kühn, H., Schewe, T., and Rapoport, S. M., 1988, The biological dynamics of lipoxygenase in rabbit red cells in the course of an experimental bleeding anaemia. Unexpected effects of the calcium ionophore A 23187, Biomed. Biochim. Acta 47:593–608.

    Google Scholar 

  • Lutze, G., Kunze, D., Reichmann, G., Wiswedel, I., and Augustin, H. W., 1977, Phospholipidzusammensetzung and Fettsäuremuster der isolierten Phospholipide von Mitochondrien aus Kaninchenretickulozyten, Acta Biol. Med. Ger. 36: 1403–1411.

    PubMed  CAS  Google Scholar 

  • McGuire, M. J., and DeMartino, C. S., 1986, Purification and characterization of a high molecular weight proteinase (macropain) from human erythrocytes, Biochim. Biophys. Acta 873: 279–289.

    PubMed  CAS  Google Scholar 

  • McKay, M. J., Daniels, R. S., and Hipkiss, A. R., 1980, Breakdown of aberrant protein in rabbit reticulocytes decreases with cell age, Biochem. J. 188: 279–283.

    PubMed  CAS  Google Scholar 

  • Magnani, M., Stocchi, V., Dacha, M., and Fomaini, G., 1984, Rabbit red blood cell hexokinase. Evidence for an ATP-dependent decay during cell maturation, Mol. Cell. Biochem. 61: 83–92.

    PubMed  CAS  Google Scholar 

  • Mai, A., Sandring, D., Belkner, J., Prehn, S., and Rapoport, S. M., 1980, In vitro-Reifung von Retikulozyten. Verhalten von RNS and anorganischer Pyrophosphatase, Acta Biol. Med. Ger. 39: 217–222.

    PubMed  CAS  Google Scholar 

  • Maniatis, G. M., Ramirez, F., Cann, A., Marks, P. A., and Bank, A., 1976, Translation and stability of human globin mRNA in Xenopus oocytes, J. Clin. Invest. 58: 1419–1427.

    PubMed  CAS  Google Scholar 

  • Marbaix, G., Burny, A., Huez, G., Lebleu, B., and Temmermann, J., 1970, Evolution of the polyribosome distribution during in vivo reticulocyte maturation, Eur. J. Biochem. 13: 322–325.

    Google Scholar 

  • Marbaix, G., Huez, G., Nokin, P., and Cleuter, Y., 1976, Free cytoplasmic a-globin messenger RNA appears during the maturation of reticulocytes, FEBS Lett. 66: 269–273.

    PubMed  CAS  Google Scholar 

  • Maretzki, D., Kostid, M. M., Reimann, B., Schwarzer, E., and Rapoport, S. M., 1986, Maturation of rabbit reticulocytes: Strong decline of the turnover of polyphosphoinositides, Biomed. Biochim. Acta 45: 1227 1236.

    Google Scholar 

  • Maretzki, D., Ueta, N., Reimann, B., Schwarzer, E., Kostic, M., and Rapoport, S. M., 1987, Maturation dependence of the turnover of phosphatidylinositides in rabbit red blood cells, Biomed. Biochim. Acta 46: 167–171.

    Google Scholar 

  • Matsumoto, T., Funk, C. D., Radmark, O., Höög, J.-O., Jörnvall, H., and Samuelsson, B., 1988, Molecular cloning and amino acid sequence of human 5-lipoxygenase, Proc. Natl. Acad. Sci. USA 85: 26–30.

    PubMed  CAS  Google Scholar 

  • Merrick, W. C., Kemper, W. M., Kantor, J. A., and Anderson, W. F., 1975, Purification and properties of rabbit reticulocyte protein synthesis elongation factor 2, J. Biol. Chem. 250: 2620–2625.

    Google Scholar 

  • Meyer, D. I., Krause, E., and Dobberstein, B., 1982, Secretory protein translocation across membranes—the role of the “docking protein,” Nature 297: 647–650.

    PubMed  CAS  Google Scholar 

  • Minich, W. B., Evdokimova, V. M., Oleinikov, A. V., Höhne, M., Thiele, B. J., and Rapoport, S. M., 1989, Evidence for the appearance of a reticulocyte population low in lipoxygenase mRNA during the recovery from a phenylhydrazine-induced anemia in rabbits, FEBS Lett. in press.

    Google Scholar 

  • Morimoto, R., and Fodor, E., 1984, Cell-specific expression of heat shock proteins in chicken reticulocytes and lymphocytes, J. Cell Biol. 99: 1316–1323.

    PubMed  CAS  Google Scholar 

  • Mosca, J. D., Wu, J. M., and Suhadolnik, R. J., 1983, Restoration of protein synthesis in lysed rabbit reticulocytes by the enzymatic removal of adenosine 5’-monophosphate with either AMP deaminase or AMP nucleosidase, Biochemistry 22: 346–354.

    PubMed  CAS  Google Scholar 

  • Müller, M., Dubiel, W., Rathmann, J., and Rapoport, S. M., 1980, Determination and characteristics of energy-dependent proteolysis in rabbit reticulocytes, Eur. J. Biochem. 109: 405–410.

    PubMed  Google Scholar 

  • Murray, J. J., and Brash, A. R., 1988, Rabbit reticulocyte lipoxygenase catalyzes specific 12(S) and 15(S) oxygenation of arachidonylphosphatidylcholine, Arch. Biochem. Biophys. 265: 514–523.

    PubMed  CAS  Google Scholar 

  • Narumiya, S., Salmon, J. A., Cottee, F. H., Weatherley, B. C., and Flower, R. J., 1981, Arachidonic acid 15lipoxygenase from rabbit peritoneal polymorphonuclear leukocytes. Partial purification and properties, J. Biol. Chem. 256: 9583–9592.

    PubMed  CAS  Google Scholar 

  • Navaratnam, S., Feiters, M. C., Al-Hakim, M., Allen, J. C., Veldink, G. A., and Vliegenthart, J. F. G., 1988, Iron environment in soybean lipoxygenase-1, Biochim. Biophys. Acta 956: 70–76.

    PubMed  CAS  Google Scholar 

  • Nudel, U., Soreq, H., Littauer, U. Z., Marbaix, G., Huez, G., Leclercq, M., Hubert, E., and Chantrenne, H., 1976, Globin mRNA species containing poly(A) segments of different lengths. Their functional stability in Xenopus oocytes, Eur. J. Biochem. 64: 115–121.

    PubMed  CAS  Google Scholar 

  • O’Prey, J., Chester, J., Thiele, B. J., Janetzki, S., Prehn, S., Fleming, J., and Harrison, P. R., 1989, The promoter structure and complete sequence of the rabbit erythroid cell-specific 15-lipoxygenase gene, Gene 84: 493–499.

    PubMed  Google Scholar 

  • Orr, L., Adam, M., and Johnstone, R. M., 1987, Externalization of membrane-bound activities during sheep reticulocyte maturation is temperature and ATP-dependent, Biochem. Cell. Biol. 65: 1080–1090.

    PubMed  CAS  Google Scholar 

  • Pan, B. T., and Johnstone, R. M., 1983, Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro; selective externalization of the receptor, Cell 33: 967–977.

    PubMed  CAS  Google Scholar 

  • Pan, B. T., Teng, K., Wu, C., Adam, M., and Johnstone, R. M., 1985, Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocyte, J. Cell Biol. 101: 94 2948.

    Google Scholar 

  • Park, E. A., and Morgan, H. E., 1984, Energy dependence of RNA degradation in rabbit reticulocytes, Am. J. Physiol. 247: C390 — C395.

    PubMed  CAS  Google Scholar 

  • Parodi, A. J., and Martin-Barrientes, J., 1977, Glycosylation of endogenous proteins through dolichol derivates in reticulocyte plasma membranes, Biochim. Biophys. Acta 500: 80–88.

    PubMed  CAS  Google Scholar 

  • Pickart, C. M., and Anthony, T. V., 1988, Levels of active ubiquitin carrier proteins decline during erythroid maturation, J. Biol. Chem. 263: 12028–12035.

    PubMed  CAS  Google Scholar 

  • Prehn, S., Rosenthal, S., and Rapoport, S. M., 1972, The temperature-dependent enzymatic breakdown of rRNA of reticulocytes, Eur. J. Biochem. 24: 456–460.

    PubMed  CAS  Google Scholar 

  • Priess, H., and Zillig, W., 1967, Inhibitor für pankreatische Ribonuclease aus roten Blutzellen, Hoppe-Seyler’s Z. Physiol. Chem. 348: 817–822.

    PubMed  CAS  Google Scholar 

  • Rapoport, S. M., 1986, The Retikulocyte, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Rapoport, S. M., and Gerischer-Mothes, W., 1955, Biochemische Vorgänge bei der Erythrocytenreifung: Über einen Hemmstoff des Succinatoxydase-Systems in Reticulocyten, Hoppe-Seyler’s Z. Physiol. Chem. 302: 167–178.

    PubMed  CAS  Google Scholar 

  • Rapoport, S. M., and Nieradt-Hiebsch, C., 1955, Biochemische Vorgänge bei der Retikulocytenreifung: Über den Angreiffspunkt des Reticulocytenhemmstoffes in der Atmungskette, Hoppe-Seyler’ s Z. Physiol. Chem. 302: 179–185.

    PubMed  CAS  Google Scholar 

  • Rapoport, S., Guest, G. M., and Wing, M., 1944, Size, hemoglobin content and acid-soluble phosphorus of erythrocytes of rabbits with phenylhydrazine-induced reticulocytosis, Proc. Soc. Exp. Biol. Med. 57: 334347.

    Google Scholar 

  • Rapoport, S. M., Schewe, T., Wiesner, R., Halangk, W., Ludwig, P., Janicke-Höhne, M., Tanned, C., Hiebsch, C., and Klatt, D., 1979, The lipoxygenase of reticulocytes. Purification, characterization and biological dynamics of the lipoxygenase, its identity with the respiratory inhibitors of the reticulocyte, Eur. J. Biochem. 96: 545–561.

    PubMed  CAS  Google Scholar 

  • Rapoport, S., Müller, M., Dumdey, R., and Rathmann, J., 1980, Nitrogen economy and the metabolism of serine and glycine in reticulocytes of rabbits, Eur. J. Biochem. 108: 449–455.

    PubMed  CAS  Google Scholar 

  • Rapoport, S. M., Dubiel, W., and Müller, M., 1981, The mechanism of maturation-dependent breakdown of mitochondria in reticulocytes, Acta Biol. Med. Ger. 40: 1277–1283.

    PubMed  CAS  Google Scholar 

  • Rapoport, S., Härtel, B., and Hausdorf, G., 1984, Methionine sulfoxide formation is the cause of self-inactivation of reticulocyte lipoxygenase, Eur. J. Biochem. 139: 573–576.

    PubMed  CAS  Google Scholar 

  • Rapoport, S. M., Dubiel, W., and Müller, M., 1985a, Proteolysis of mitochondria in reticulocytes during maturation is ubiquitin-dependent and is accompanied by a high rate of ATP hydrolysis, FEBS Lett. 180: 249–252.

    PubMed  CAS  Google Scholar 

  • Rapoport, S. M., Schmidt, J., and Prehn, S., 1985b, Maturation of rabbit reticulocytes: Susceptibility of mitochondria to ATP-dependent proteolysis is determined by the maturational state of reticulocytes, FEBS Lett. 183: 370–374.

    PubMed  CAS  Google Scholar 

  • Rapoport, S., Schmidt, J., and Prehn, S., 1986, Fe-dependent formation of a protein that makes mitochondria lipoxygenase-susceptible during maturation of reticulocytes, FEBS Lett. 198: 109–111.

    PubMed  CAS  Google Scholar 

  • Raviv, O., Heller, H., and Hershko, A., 1987, Alterations in components of the ubiquitin-protein ligase system following maturation of reticulocytes to erythrocytes, Biochem. Biophys. Res. Comm. 145: 658–665.

    PubMed  CAS  Google Scholar 

  • Raw, I., and DiFini, F., 1983, The possible role of ATP-dependent proteolysis on the solubilization of methemoglobin reductase during reticulocyte maturation, Biochem. Biophys. Res. Commun. 116: 357–359.

    PubMed  CAS  Google Scholar 

  • Rechsteiner, M., 1987, Ubiquitin-mediated pathways for intracellular proteolysis, Annu. Rev. Cell Biol. 3: 1–30.

    PubMed  CAS  Google Scholar 

  • Richter-Rapoport, S. K. N., Dumdey, R., Hiebsch, C., Thamm, R., Uerlings, I., and Rapoport, S., 1977, Charakterisierung von Retikulozyten des Menschen: Atmung, Pasteur-Effekt und elektronenmikroskopische Befunde an Mitochondrien, Acta Biol. Med. Ger. 36: 53–64.

    PubMed  CAS  Google Scholar 

  • Rifkind, R. A., Danon, D., and Marks, P. A., 1964, Alterations in polysomes during erythroid cell maturation, J. Cell Biol. 22: 599–611.

    PubMed  CAS  Google Scholar 

  • Rivett, A. J., 1989, The multicatalytic proteinase from mammalian cells, Arch. Biochem. Biophys. 268: 1–8.

    PubMed  CAS  Google Scholar 

  • Rosenthal, S., Künzel, W., and Wagenknecht, C., 1964a, Biochemische Charakterisierung der Ribosomen von Kaninchenretikulozyten und ihre Reifungsänderung, Acta Biol. Med. Ger. 13: 281–290.

    PubMed  CAS  Google Scholar 

  • Rosenthal, S., Rapoport, S. M., and Heinemann, G., 1964b, Über eine ribosomale RNase aus Kaninchenretikulozyten, Acta Biol. Med. Ger. 13: 946–948.

    PubMed  CAS  Google Scholar 

  • Rosenthal, S., Prehn, S., and Rapoport, S., 1966, Uridinfreisetzung aus ribosomaler RNS von Kaninchenretikulozyten durch alkalische RNase aus Retikulozytenribosomen und Pankreas, Acta Biol. Med. Ger. 17: 667670.

    Google Scholar 

  • Rosenthal, S., Gross, J., Grauel, E. L., Papies, B., Schulz, W., Belkner, J., Botscharowa, L., Coutelle, C., Hawemann, M., Nieradt-Hiebsch, C., Müller, M., Opitz, M., Prehn, S., Schultze, M., Staak, R., and Wiesner, R., 1972, Leitkriterien der Retikulozytenreifung, in: 6th Internationales Symposium über Struktur und Funktion der Erythrocyten ( S. Rapoport and F. Jung, eds.), pp. 513–522, Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, Akademie-Verlag, Berlin.

    Google Scholar 

  • Rost, G., 1959, Eigenschaften und Vorkommen eines Ribonuklease-Hemmstoffes im stromafreien Hämolysat roter Blutkörperchen, Acta Biol. Med. Ger. 3: 276–283.

    PubMed  CAS  Google Scholar 

  • Rothman, J. E., and Schmidt, S. L., 1986, Enzymatic recycling of clathrin from coated vesicles, Cell 46: 5.

    PubMed  CAS  Google Scholar 

  • Rouzer, C. A., and Samuelsson, B., 1987, Reversible calcium-dependent membrane association of human leukocyte 5-lipoxygenase, Proc. Natl. Acad. Sci. USA 84: 7393–7397.

    PubMed  CAS  Google Scholar 

  • Salzmann, U., Kühn, H., Schewe, T., and Rapoport, S. M., 1984, Pentane formation during the anaerobic reaction of reticulocyte lipoxygenase. Comparison with lipoxygenases from soybeans and green pea seeds, Biochim. Biophys. Acta 795: 535–542.

    PubMed  CAS  Google Scholar 

  • Salzmann, U., Ludwig, P., Schewe, T., and Rapoport, S. M., 1985, The share of lipoxygenase in the antimycin-resistant oxygen uptake of intact reticulocytes, Biomed. Biochim. Acta 44: 211–219.

    CAS  Google Scholar 

  • Salzmann-Reinhardt, U., Kühn, H., Wiesner, R., and Rapoport, S., 1985, Metabolism of polyunsaturated fatty acids by rabbit reticulocytes, Eur. J. Biochem. 153: 189–194.

    PubMed  CAS  Google Scholar 

  • Samuelsson, B., Dahlén, S. E., Lindgren, J. A., and Rouzer, C. A., 1987, Leukotrienes and lipoxins. Structures, biosynthesis and biological effects, Science 237: 1171–1175.

    PubMed  CAS  Google Scholar 

  • Schafer, D., and Hultquist, D. E., 1981, Isolation of an acid protease from rabbit reticulocytes and evidence for its role in processing redox proteins during erythroid maturation, Biochem. Biophys. Res. Commun. 100: 1555–1561.

    PubMed  CAS  Google Scholar 

  • Schekman, R., and Singer, S. J., 1976, Clustering and endocytosis of membrane receptors can be induced in mature erythrocytes of neonatal but not adult humans, Proc. Natl. Acad. Sci. USA 73: 4075–4079.

    PubMed  CAS  Google Scholar 

  • Schewe, T., Wiesner, R., and Schulz, W., 1972, Mitochondrien aus Kaninchen-retikulozyten. III. Zytochromund Phospholipid-Gehalt, Acta Biol. Med. Ger. 28: 1–6.

    PubMed  CAS  Google Scholar 

  • Schewe, T., Halangk, W., Hiebsch, C., and Rapoport, S. M., 1975, A lipoxygenase in rabbit reticulocytes which attacks phospholipids and intact mitochondria, FEBS Lett. 60: 149–152.

    PubMed  CAS  Google Scholar 

  • Schewe, T., Albracht, S. P. J., and Ludwig, P., 1981, On the site of action of the inhibition of the mitochondrial respiratory chain by lipoxygenase, Biochim. Biophys. Acta 636: 210–217.

    PubMed  CAS  Google Scholar 

  • Schewe, T., Rapoport, S. M., and Kühn, H., 1986, Enzymology and physiology of reticulocyte lipoxygenase: Comparison with other lipoxygenases, Adv. Enzymol. Relat. Areas Mol. Biol. 58: 191–272.

    PubMed  CAS  Google Scholar 

  • Schewe, T., Kroschwald, P., Kroschwald, A., Ludwig, P., and Kühn, H., 1990, The erythroid arachidonate 15lipoxygenase in rat reticulocytes, Biomed. Biochim. Acta 49: S42 — S46.

    PubMed  CAS  Google Scholar 

  • Schlegel, R. A., Phelps, B. M., Cofer, G. P., and Williamson, P., 1982, Enucleation eliminates a differentiation-specific marker from normal and leukemic murine cells, Exp. Cell Res. 139: 321–328.

    PubMed  CAS  Google Scholar 

  • Schmidt, J., Prehn, S., and Rapoport, S. M., 1985, Proteolysis during in vitro-maturation of rabbit reticulocytes, Biomed. Biochim. Acta 44: 1429–1434.

    PubMed  CAS  Google Scholar 

  • Schulz, W., Neymeyer, H. G., and Rosenthal, S., 1971, Mitochondrien aus Kaninchenretikulozyten. I. Präparation and zeltphysiologische Reinheitskriterien, Acta Biol. Med. Ger. 26: 439–456.

    PubMed  CAS  Google Scholar 

  • Schweiger, H. G., and Rapoport, S. M., 1958, Der N-Stoffwechsel bei Erythrocytenreifung: Die N-Bilanz unter endogenen Bedingungen, Hoppe-Seyler’s Z. Physiol. Chem. 313: 97–108.

    PubMed  CAS  Google Scholar 

  • Schweiger, H. G., Rapoport, S. M., and Schölzel, E., 1956, Role of nonprotein nitrogen in the synthesis of haemoglobin in the reticulocyte in vitro, Nature 178: 141–142.

    PubMed  CAS  Google Scholar 

  • Shibata, D., Steczko, J., Dixon, J. E., Hermodson, M., Yazdanparast, R., and Axelrod, B., 1987, Primary structure of soybean lipoxygenase-1, J. Biol. Chem. 262: 10080–10085.

    PubMed  CAS  Google Scholar 

  • Shibata, D., Steczko, J., Dixon, J. E., Andrews, P. C., Hermodson, M., and Axelrod, B., 1988, Primary structure of soybean lipoxygenase L-2, J. Biol. Chem. 263: 6816–6821.

    PubMed  CAS  Google Scholar 

  • Siems, W., Müller, M., Dumdey, R., Holzhütter, H.-G., Rathmann, J., and Rapoport, S. M., 1982, Quantification of pathways of glucose utilization and balance of energy metabolism of rabbit reticulocytes, Eur. J. Biochem. 124: 567–576.

    PubMed  CAS  Google Scholar 

  • Siems, W., Dubiel, W., Dumdey, R., Müller, M., and Rapoport, S. M., 1984, Accounting for the ATP-consuming processes in rabbit reticulocytes, Eur. J. Biochem. 139: 101–107.

    PubMed  CAS  Google Scholar 

  • Sigal, E., Craik, C. S., Highland, E., Grunberger, D., Costello, L. L., Dixon, R. A. F., and Nadel, J. A., 1988a, Molecular cloning and primary structure of human 15-lipoxygenase, Biochem. Biophys. Res. Commun. 157: 457–464.

    PubMed  CAS  Google Scholar 

  • Sigal, E., Grunberger, D., Craik, C. S., Caughey, G. H., and Nadel, J. A., 1988b, Arachidonate 15-lipoxygenase ((o-6 lipoxygenase) from human leukocytes. Purification and structural homology to other mammalian lipoxygenases, J. Biol. Chem. 263: 5328–5332.

    PubMed  CAS  Google Scholar 

  • Singh, M. K., and Yu, J., 1984, Accumulation of a heat-shock-like protein during differentiation of human erythroid cell line, Nature 309: 631–633.

    PubMed  CAS  Google Scholar 

  • Smith, D. W., and Weinberg, W. C., 1981, Transfer RNA in reticulocyte maturation, Biochim. Biophys. Acta 655: 195–198.

    PubMed  CAS  Google Scholar 

  • Speiser, S., and Etlinger, J. D., 1982, Loss of ATP-dependent proteolysis with maturation of reticulocytes and erythrocytes, J. Biol. Chem. 257: 14122–14127.

    PubMed  CAS  Google Scholar 

  • Speiser, S., and Etlinger, J. D., 1983, ATP stimulates proteolysis in reticulocyte extracts by repressing an endogenous protease inhibitor, Proc. Natl. Acad. Sci. USA 80: 3577–3580.

    PubMed  CAS  Google Scholar 

  • Tanaka, K., and Ichihara, A., 1988, Involvement of proteasomes (multicatalytic proteinase) in ATP-dependent proteolysis in rat reticulocyte extracts, FEBS Len. 236: 159–162.

    CAS  Google Scholar 

  • Thiele, B. J., Belkner, J., Andree, H., Rapoport, T. A., and Rapoport, S. M., 1979, Synthesis of non-globin proteins in rabbit erythroid cells. Synthesis of a lipoxygenase in reticulocytes, Eur. J. Biochem. 96: 563–569.

    PubMed  CAS  Google Scholar 

  • Thiele, B. J., Andree, H., Höhne, M., and Rapoport, S. M., 1982, Lipoxygenase mRNA in rabbit reticulocytes. Its isolation, characterization and translational repression, Eur. J. Biochem. 129: 133–141.

    PubMed  CAS  Google Scholar 

  • Thiele, B. J., Black, E., Fleming, J., Nack, B., Rapoport, S. M., and Harrison, P. R., 1987a, Cloning of reticulocyte lipoxygenase mRNA, Biomed. Biochim. Acta 46: 5120 — S123.

    Google Scholar 

  • Thiele, B. J., Höhne, M., Nack, B., Harrison, P. R., and Rapoport, S. M., 1987b, Lipoxygenase mRNA during development of red blood cells studied with a cloned probe, Biomed. Biochim. Acta 46: S124–5125.

    CAS  Google Scholar 

  • Thiele, B. J., Fleming, J., Kasturi, K., O’Prey, J., Black, E., Chester, J., Rapoport, S. M., and Harrison, P. R., 1987c, Cloning of a rabbit erythroid cell-specific lipoxygenase mRNA, Gene 57: 111–119.

    PubMed  CAS  Google Scholar 

  • Thilo, C., Schewe, T., Belkner, J., and Rapoport, S., 1979, In Vitro-Reifung von Kaninchenretikulozyten: Verhalten des Sauerstoffverbrauchs, Acta Biol. Med. Ger. 39: 1431–1440.

    Google Scholar 

  • Ueda, N., Kaneko, S., Yoshimoto, T., and Yamamoto, S., 1986, Purification of arachidonate 5-lipoxygenase from porcine leukocytes and its reactivity with hydroperoxyeicosatetraenoic acids, J. Biol. Chem. 261: 7982–7988.

    PubMed  CAS  Google Scholar 

  • Van der Meer, R. A., and Duine, J. A., 1988, Pyrroloquinoline quinone (PQQ) is the organic cofactor in soybean lipoxygenase-1, FEBS Lett. 235: 194–200.

    Google Scholar 

  • Van Renswoude, J., Bridges, K., Harford, J. B., and Klausner, R. D., 1982, Receptor-mediated endocytosis of transferrin and the uptake of Fe in K562 cells: Identification of a nonlysosomal acidic compartment, Proc. Natl. Acad. Sci. USA 79: 6186–6190.

    PubMed  Google Scholar 

  • Villa-Trevino, S., Shull, K. H., and Farber, E., 1963, The role of adenosine triphosphate deficiency in ethionine-induced inhibition of protein synthesis, J. Biol. Chem. 238: 1757–176.

    PubMed  CAS  Google Scholar 

  • Vladimirov, Y. A., Olenov, V. I., Suslova, T. B., and Cheremisina, Z. P., 1980, Lipid peroxidation in mitochondrial membrane, Adv. Lipid Res. 17: 173–249.

    PubMed  CAS  Google Scholar 

  • Wathelet, M., Moutschen, S., Defilippi, P., Cravador, A., Collet, M., Huez, G., and Content, J., 1986, Molecular cloning, full-length sequence and preliminary characterization of a 56-kDa protein induced by human interferons, Eur. J. Biochem. 155: 11–17.

    PubMed  CAS  Google Scholar 

  • Waxman, L., Fagan, J. M., Tanaka, K., and Goldberg, A. L., 1985, A soluble ATP-dependent system for protein degradation from murine erythroleukemia cells: Evidence for a protease which requires ATP hydrolysis but not ubiquitin, J. Biol. Chem. 260: 11994–12000.

    PubMed  CAS  Google Scholar 

  • Waxman, L., Fagan, J. M., and Goldberg, A. L., 1987, Demonstration of two distinct high-molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates, J. Biol. Chem. 262: 2451 2457.

    Google Scholar 

  • Wiedmann, M., Kurzchelia, T., Hartmann, E., and Rapoport, T. A., 1987, A signal sequence receptor in the endoplasmic reticulum membrane, Nature 328: 830–833.

    PubMed  CAS  Google Scholar 

  • Wiesner, R., Rosenthal, S., and Hiebsch, C., 1973, Leitkriterien der Retikulozytenreifung, II. Das Verhalten von Zytochromoxydase und Hemmstoff F der Atmungskette bei der Retikulozytenreifung, Acta Biol. Med. Ger. 30: 631–646.

    PubMed  CAS  Google Scholar 

  • Wiesner, R., Kasüschke, A., Kühn, H., Anton, M., and Schewe, T., 1989, Oxygenation of mitochondrial membranes by the reticulocyte lipoxygenase. Action on monoamine oxidase activities A and B, Biochim. Biophys. Acta 986: 11–17.

    PubMed  CAS  Google Scholar 

  • Wiesner, R., Kühn, H., Anton, M., and Schewe, T., 1990, Oxygenation of mitochondrial membranes by the erythroid lipoxygenase. Consequences for membrane properties, Biomed. Biochim. Acta 49: S35 — S38.

    PubMed  CAS  Google Scholar 

  • Wreschner, D. H., and Rechavi, G., 1988, Differential mRNA stability to reticulocyte ribonucleases correlates with 3’ non coding (U)„A sequences, Eur. J. Biochem. 172: 333–340.

    PubMed  CAS  Google Scholar 

  • Wreschner, D. H., Silverman, R. H., James, T. C., Gilbert, C. S., and Kerr, I. M., 1982, Affinity labelling and characterization of the ppp(A2’P)„A-dependent endoribonuclease from different mammalian sources, Eur. J. Biochem. 124: 261–268.

    PubMed  CAS  Google Scholar 

  • Yatziv, S., Kahane, I., Abeliuk, P., Cividally, G., and Rachmilewitz, E. A., 1979, “Lysosomal” enzyme activities in red blood cells of normal individuals and patients with homozygous 13-thalassaemia, Clin. Chim. Acta 96:67–72.

    Google Scholar 

  • Yenofsky, R. L., Fine, M., and Liu, C., 1988, Isolation and characterization of a soybean (Glycine max) lipoxygenase-3 gene, Mol. Gen. Genet. 211: 215–222.

    CAS  Google Scholar 

  • Zeidler, R. B., and Kim, M. D., 1982, Pig reticulocytes. IV. In vitro maturation of naturally occurring reticulocytes with permeability loss to glucose, J. Cell. Physiol. 112: 360–366.

    Google Scholar 

  • Zweig, S., Tokuysu, K., and Singer, S., 1981, Membrane-associated changes during erythropoiesis. On the mechanism of maturation of reticulocytes to erythrocytes, J. Supramol. Struct. 17: 163–182.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rapoport, S.M., Schewe, T., Thiele, BJ. (1990). Maturational Breakdown of Mitochondria and Other Organelles in Reticulocytes. In: Harris, J.R. (eds) Erythroid Cells. Blood Cell Biochemistry, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9528-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9528-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9530-1

  • Online ISBN: 978-1-4757-9528-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics