Skip to main content

Protonic Conductivity in Biomaterials in the Frame of Percolation Model

  • Chapter
Book cover Biologically Inspired Physics

Part of the book series: NATO ASI Series ((NSSB,volume 263))

  • 205 Accesses

Abstract

In the last few years we have studied the dielectric properties of nearly dry biological materials as a function of their water content. Details of the experimental apparatus have been given1. Let us only mention here that our technique combines a digital balance to monitor sample’s weight with an a. c. bridge to record radiofrequency dielectric properties of a composite capacitor, designed to avoid metal contacts and to ensure uniform evaporation from the sample. The investigation of lysozyme powders was quite fruitful because we were able to assess the onset of a protonic percolative conductivity at a critical hydration threshold. This threshold was found to be coincident with the critical hydration for the onset of enzymatic activity3–7. This study was extended to other more complex biomaterials, of different origin: purple membrane8, artemia cysts9, and maize-seed components10. In all these cases a critical hydration for the onset of a biological function was already known, and our data showed the percolative threshold for proton motion to be correlated with the emergence of biological function11.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Careri and A. Giansanti, Dielectric properties of nearly dry biological systems at megahertz frequencies, in: Membranes, Metabolism, and Dry Organisms A. C. Leopold, ed., Cornell University Press, Ithaca (1986).

    Google Scholar 

  2. J. A. Rupley, E. Gratton and G. Careri, Water and globular proteins, Trends Biochem. Sci. 8: 18 (1983).

    Article  Google Scholar 

  3. J. A. Rupley and G. Careri, Protein hydration and function, Adv. Protein Chem. in press (1990).

    Google Scholar 

  4. J. A. Rupley, P. H. Yang and G. Tollin, Thermodynamic and related studies of water interacting with proteins, in: Water in polimers, ACS Symposium Series vol. 127 S. P. Rowlands, ed., American Chemical Society, Washington (1980).

    Google Scholar 

  5. G. Careri, M. Geraci, A. Giansanti and J. A. Rupley, Protonic conductivity of hydrated lysozyme powders at megahertz frequencies, Proc. Natl. Acad. Sci. U.S.A. 82: 5342 (1985).

    Article  ADS  Google Scholar 

  6. G. Careri, A. Giansanti and J. A. Rupley, Proton percolation on hydrated lysozyme powders, Proc. Natl. Acad. Sci. U.S.A. 83: 6810 (1986).

    Article  ADS  Google Scholar 

  7. G. Careri, A. Giansanti and J. A. Rupley, Critical exponents of protonic percolation in hydrated lysozyme powders, Phys. Rev. A37: 2703 (1988).

    ADS  Google Scholar 

  8. J. A. Rupley, L. Siemankowski, G. Careri and F. Bruni, Two dimensional protonic percolation on lightly hydrated purple membrane, Proc. Natl. Acad. Sci. U.S.A. 85: 9022 (1988).

    Article  ADS  Google Scholar 

  9. F. Bruni, G. Careri and J. S. Clegg, Dielectric Properties of artemia cysts at low water contents, Biophys. J. 55: 331 (1989).

    Article  ADS  Google Scholar 

  10. F. Bruni, G. Careri and A. C. Leopold, Critical exponents of protonic percolation in maize seeds, Phys. Rev. A40: 2803 (1989).

    ADS  Google Scholar 

  11. G. Careri, Emergence of function in disordered biomaterials, in: Symmetry in nature, a volume in honour of L. A. Radicati di Brozolo, Scuola Normale Superiore, Pisa (1989).

    Google Scholar 

  12. R. Zallen, The Physics of Amorphous Solids, Wiley, New York (1983).

    Book  Google Scholar 

  13. D. Stauffer, Introduction to Percolation Theory, Taylor and Francis, London (1985).

    Book  MATH  Google Scholar 

  14. G. Careri, A. Giansanti and J. A. Rupley, Detection of protonic percolation on hydrated lysozyme powders, in: Disordered Solids: structures and processes, B. Di Bartolo ed., Plenum Press, New York (1989).

    Google Scholar 

  15. P. Pissis and A. Anagnostopoulou Konsta, Protonic percolation on hydrated lysozyme powders studied by the method of thermally stimulated depolarisation currents method, J. Phys. D: Appl. Phys. 23: 932 (1990).

    Article  ADS  Google Scholar 

  16. R. F. Voss, R. B. Laibowitz and E. I. Allessandrini, Fractal (scaling) clusters in thin gold films near the percolation threshold, Phys. Rev. Lett. 49: 1441 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Careri, G., Giansanti, A. (1991). Protonic Conductivity in Biomaterials in the Frame of Percolation Model. In: Peliti, L. (eds) Biologically Inspired Physics. NATO ASI Series, vol 263. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9483-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9483-0_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9485-4

  • Online ISBN: 978-1-4757-9483-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics