Skip to main content

Theoretical Analysis of Phospholipid Vesicles and Red Blood Cell Shapes and the Effect of External Electric Field

  • Chapter
  • 203 Accesses

Part of the book series: NATO ASI Series ((NSSB,volume 263))

Abstract

Phospholipid vesicles and biological cells display a variety of different shapes and the question can be asked what determines the equilibrium shape of a cell and its shape changes. As the inner solutions of red blood cells (RBC) and phospholipid vesicles (PV) do not involve any structure, the shapes of these objects depend solely on the physical and chemical state of their membranes. It is commonly believed that for a given membrane the shapes that are formed correspond to the minimum value of the membrane elastic energy. This energy can, in general, be decomposed into the sum of the stretching, shear and bending energy terms1. It is also a general property of membranes that relatively much more energy is needed to stretch them than to cause shear deformation or bending. Consequently, the shape established by a flaccid cell or vesicle corresponds to the minimum value of the sum of the shear and bending energy terms, where its membrane area is practically constant. In particular, phospholipid membranes are two-dimensional liquids and as such do not exhibit shear elasticity. Thus their shape is determined only by the membrane bending energy. The RBC membrane is structurally more complex than the PV membrane, involving, for example, a cytoplasmic protein network and can therefore exhibit shear elasticity2. However, which of the above two elastic deformations is the main determinant of the RBC shape still cannot be definitely established. At least some of the shapes observed in PV and RBC systems are alike3 which indicates a possible dominant role of the membrane bending energy. It is therefore of interest to investigate the RBC shape behavior under the assumption of a minimum value of membrane bending energy as a possible limiting case of a more general situation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. A. Evans and R. Skalak, Mechanics and Thermodynamics of Biomembranes, CRC Press, Boca Raton, FL (1980).

    Google Scholar 

  2. R. M. Hochmuth and R. E. Waugh, Annu. Rev. Physiol. 49, 209 (1987).

    Article  Google Scholar 

  3. E. Sackmann, H.-P. Duwe and H. Engelhardt, Faraday Discuss. Chem. Soc. 81, 281 (1986).

    Article  Google Scholar 

  4. P. B. Canham, J. Theor. Biol. 26, 61 (1970).

    Article  Google Scholar 

  5. J. T. Jenkins, J. Math. Biol. 4, 149 (1977).

    Article  MATH  Google Scholar 

  6. W. Helfrich and H. J. Deuling, J. Phys. (Paris) Colloq. 36, 327 (1975).

    Article  Google Scholar 

  7. H. J. Deuling and W. Helfrich, J. Phys. (Paris) 37, 1335 (1976).

    Article  Google Scholar 

  8. H. J. Deuling and W. Helfrich, Biophys. J. 16, 861 (1976).

    Article  ADS  Google Scholar 

  9. J. C. Luke, SIAM J. Appl. Math. 42, 333 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. C. Luke and J. I. Kaplan, Biophys. J. 25, 107 (1979).

    Article  Google Scholar 

  11. M. A. Peterson, J. Appl. Phys. 57, 1739 (1985).

    Article  ADS  Google Scholar 

  12. E. A. Evans, Biophys. J. 14, 923 (1974).

    Article  ADS  Google Scholar 

  13. M. P. Sheetz and S. J. Singer, Proc. Natl. Acad. Sci. USA 71., 4457 (1974).

    Article  ADS  Google Scholar 

  14. S. Svetina, A. Ottova-Leitmannova and R. Glaser, J. Theor. Biol. 94, 13 (1982).

    Article  Google Scholar 

  15. S. Svetina and B. Žekš, Biomed. Biochim. Acta 44, 979 (1985).

    Google Scholar 

  16. S. Svetina and B. Žekš, Eur. Biophys. J. 17, 101 (1989).

    Article  Google Scholar 

  17. V. Pastushenko, A. Sokirko, S. Svetina and B. Žekš, in preparation.

    Google Scholar 

  18. B. Žekš, S. Svetina and V. Pastushenko, Stud. Biophys., to be published.

    Google Scholar 

  19. K. Berndl, J. Käs, R. Lipowsky, E. Sackmann and U. Seifert, to be published.

    Google Scholar 

  20. S. Svetina, V. Kral j-Iglič and B. Žekš, Proceedings of the 10th School on Biophysics of Membrane Transport, Poland, May 1990, J. Kuczera, S. Przestalski, Eds., Wroclaw (1990) Vol. II, 139.

    Google Scholar 

  21. S. Svetina and B. Žekš, J. Theor. Biol., to be published.

    Google Scholar 

  22. W. Helfrich, Z. Naturforsch. C 29, 182 (1974).

    Google Scholar 

  23. M. Winterhalter and W. Helfrich, J. Colloid Interface Sci. 122, 583 (1988).

    Article  Google Scholar 

  24. G. Bryant and J. Wolfe, J. Membrane Biol. 96, 129 (1987).

    Article  Google Scholar 

  25. S. Svetina, M. Brumen and B. Žekš, in Biomembranes: Basic and Medical Research, G. Benga, J. M. Tager, Eds., Springer Verlag (1988) 177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Žekš, B., Svetina, S. (1991). Theoretical Analysis of Phospholipid Vesicles and Red Blood Cell Shapes and the Effect of External Electric Field. In: Peliti, L. (eds) Biologically Inspired Physics. NATO ASI Series, vol 263. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9483-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9483-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9485-4

  • Online ISBN: 978-1-4757-9483-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics