Skip to main content

Comparative Estimation of the Neurotoxic Risks of N-Hexane and N-Heptane in Rats and Humans Based on the Formation of the Metabolites 2,5-Hexanedione and 2,5-Heptanedione

  • Chapter
Book cover Biological Reactive Intermediates V

Abstract

In rats and humans, inhalation kinetics of n-hexane (HEX) and n-heptane (HEP) were compared with urinary excretion of 2,5-hexanedione (HDO) and 2,5-heptanedione (HPDO), respectively. Furthermore, the reactivities of HDO and HPDO with Nα-acetyl-L-lysine towards the formation of pyrrolyc adducts was studied. By means of the data gained, the potency of HEP for inducing peripheral neuropathy is compared with the well known one of HEX. In rats, kinetic analysis revealed two different metabolic processes for HEX and HEP, one process characterized by high affinity and low capacity (maximal rate of metabolism Vmaxl: HEX 84, HEP 112 μmol/h/kg) and one by low affinity and high capacity (Vmax2: HEX 456 μmol/h/kg). For HEP, Vmax2 cannot be given, since the deviation from linearity of the curve representing the rate of metabolism versus the exposure concentration was too small within the concentration range studied of up to 10000 ppm. Urinary excretion of HDO resulting from exposure to HEX correlated with the first process, whereas the corresponding excretion of HPDO as a metabolite of HEP correlated with the second process. In humans, rates of metabolism of HEX and HEP increased linearly with the exposure concentrations up to the tested values of 300 ppm (HEX) and 500 ppm (HEP), the pulmonary retention at steady state being 23% (HEX) and 35% (HEP) at rest. Of totally metabolized HEX during and after HEX exposure to 300 ppm, about 0.5% was excreted as HDO in urine. Of totally metabolized HEP during and after HEP exposure up to 500 ppm, only about 0.01% was excreted as HPDO in urine. Background excretion of HPDO was found in urine of rats and of both γ-diketones in urine of humans; the sources are still unknown. In rats, urinary excretion of HPDO resulting from exposure to 500 ppm HEP was about 7 times less and in humans about 4 times less than that of HDO resulting from exposure to 50 ppm HEX over the same time span. In vitro, the rate of pyrrole formation from the reaction of HPDO with Na-acetyl-L-lysine was about half that obtained with HDO. This indicates a lower neurotoxic potency of HPDO. From our findings it becomes intelligible that HEP was not neurotoxic in rats in contrast to HEX. Furthermore, for humans we also conclude the neurotoxic potency of HEP to be significantly lower than that of HEX.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anthony D. C, Boekelheide K., and Graham D. G., 1983a, The effect of 3,4-dimethyl substitution on the neurotoxicity of 2,5-hexanedione. I. Accelerated clinical neuropathy is accompanied by more proximal axonal swellings, Toxicol. Appl. Pharmacol. 71: 362–371.

    Article  PubMed  CAS  Google Scholar 

  • Anthony D. C, Boekelheide K., Anderson C. W., and Graham D. G., 1983b, The effect of 3,4-dimethyl substitution on the neurotoxicity of 2,5-hexanedione. II. Dimethyl substitution accelerates pyrrole formation and protein crosslinking, Toxicol. Appl. Pharmacol. 71: 372–382.

    Article  PubMed  CAS  Google Scholar 

  • API, 1978, 26 week inhalation toxicity study of n-hexane in the rat, Washington DC, American Petroleum Institute, API Medical Research Report No 28-30077.

    Google Scholar 

  • Bahima J., Cert A., and Menéndez-Gallego M. 1984, Identification of volatile metabolites of inhaled n-heptane in rat urine, Toxicol. Appl. Pharmacol. 76: 473–482.

    Article  PubMed  CAS  Google Scholar 

  • Bio/dynamics Inc., 1980, A 26-week inhalation toxicity study of heptane in the rat, Project No 78-7233, Bio/dynamics Inc., Division of Biology and Safety Evaluation, East Millstone, NJ, USA.

    Google Scholar 

  • Cardona A., Marhuenda D., Marti J., Brugnone F., Roel J., and Perbellini L. 1993, Biological monitoring of occupational exposure to n-hexane by measurement of urinary 2,5-hexanedione, Int. Arch. Occup. Environ. Health 65: 71–74.

    Article  PubMed  CAS  Google Scholar 

  • Couri D., and Milks M. 1982, Toxicity and metabolism of the neurotoxic hexacarbons n-hexane, 2-hexanone, and 2,5-hexanedione, Ann. Rev. Pharmacol. Toxicol. 22: 145–166.

    Article  CAS  Google Scholar 

  • Csanády G. A., and Filser J. G., 1990, SOLVEKIN: a new program for solving pharmaco-and toxicokinetic problems. Presented on the International Workshop on Pharmacokinetic Modelling in Occupational Health, March 4–8, Leysin, Switzerland.

    Google Scholar 

  • Csanády Gy., Kessler W., and Filser J. G., 1992. Inhalationskinetik von n-Heptan bei Ratte und Mensch, Verhandlungen der Deutschen Gesellschaft für Arbeitsmedizin und Umweltmedizin e. K, 32. Jahrestagung, Genter Verlag, Stuttgart, 613–616.

    Google Scholar 

  • DeCaprio A. P., and Weber P., 1980, In vitro studies on the amino group reactivity of a neurotoxic hexacarbon solvent, Pharmacologist 22: 222.

    Google Scholar 

  • DeCaprio A. P., Olajas E. J., and Weber P. 1982, Covalent binding of a neurotoxic n-hexane metabolite: Conversion of primary amines to substituted pyrrole adducts by 2,5-hexanedione, Toxicol. Appl. Pharmacol. 65: 440–450.

    Article  PubMed  CAS  Google Scholar 

  • DeCaprio A. P., Strominger N. L., and Weber P. 1983, Neurotoxicity and protein binding of 2,5-hexanedione in the hen, Toxicol. Appl. Pharmacol. 68: 297–307.

    Article  PubMed  CAS  Google Scholar 

  • DeCaprio A. P., Briggs R. G., Jackowski S. J., and Kim J. C. S. 1988, Comparative neurotoxicity and pyrrole-forming potential of 2,5-hexanedione and perdeuterio-2,5-hexanedione in the rat, Toxicol. Appl. Pharmacol. 92: 75–85.

    Article  PubMed  CAS  Google Scholar 

  • Deutsche Forschungsgemeinschaft, 1982, n-Hexan, in: Gesundheitsschädliche Arbeitsstoffe. Toxikologisch-Arbeitsmedizinische Begründungen von MAK-Werten. 11. Lieferung (ed.: D. Henschler), VCH Verlagsgesellschaft Weinheim.

    Google Scholar 

  • Deutsche Forschungsgemeinschaft, 1994, List of MAK and BAT values 1994: Maximum concentrations and biological tolerance values at the workplace, VCH Verlagsgesellschaft Weinheim.

    Google Scholar 

  • DGMK (Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie e. V), 1986, Effects of n-heptane on man and animals, DGMK-Project 174-3, Hamburg.

    Google Scholar 

  • Dietz W. G., 1994, 2,5-Hexandion und Pyrrole im Urin des Menschen: Analytische Bestimmung und Untersuchung der Ausscheidung nach Exposition gegen n-Hexan, GSF-Bericht 7/94, (ed.: GSF — Forschungszentrum für Umwelt und Gesundheit, GmbH), Neuherberg, FRG.

    Google Scholar 

  • Doerffel K., 1990, Statistik in der analytischen Chemie, 5th ed., Dt. Verlag f. Grundstoffind., Leipzig.

    Google Scholar 

  • Fedtke N., and Bolt H. M. 1986, Detection of 2,5-hexanedione in the urine of persons not exposed to n-hexane, Int. Arch. Occup. Environ. Health 57: 143–148.

    Article  PubMed  CAS  Google Scholar 

  • Fedtke N., and Bolt H. M. 1987, The relevance of 4,5-dihydroxy-2-hexanone in the excretion kinetics of n-hexane metabolites in rat and man, Arch. Toxicol. 61: 131–137.

    Article  PubMed  CAS  Google Scholar 

  • Filser J. G., Bolt H. M., Muliawan H., and Kappus H. 1983, Quantitative evaluation of ethane and n-pentane as indicators of lipid peroxidation in vivo, Arch. Toxicol. 52: 135–147.

    Article  PubMed  CAS  Google Scholar 

  • Filser J. G., Peter H., Bolt H.M., and Fedtke N. 1987, Pharmacokinetics of the neurotoxin n-hexane in rat and man, Arch. Toxicol. 60: 77–80.

    Article  PubMed  CAS  Google Scholar 

  • Filser J. G. 1992, The closed chamber technique — uptake, endogenous production, excretion, steady-state kinetics and rates of metabolism of gases and vapors, Arch. Toxicol. 66: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Filser J. G., Schwegler U., Csanády Gy. A., Greim H., Kreuzer P. E., and Kessler W. 1993, Species-specific pharmacokinetics of styrene in rat and man, Arch. Toxicol 67: 517–530.

    Article  PubMed  CAS  Google Scholar 

  • Filser J. G., Csanády Gy. A., Kessler W., Kreuzer P. E., Stömer A., and Greim H., 1994, Interspecies extrapolation from rodents to humans demonstrated on selected industrial chemicals. ISSX Proceedings 6: 38.

    Google Scholar 

  • Fiserova-Bergerova V., 1983, Modeling of metabolism and excretion in vivo. In: Modeling of inhalation exposure to vapors: Uptake, distribution, and elimination. Vol. I (ed. V. Fiserova-Bergerova), CRC Press, Boca Raton Florida.

    Google Scholar 

  • Frommer U., Ullrich V, and Staudinger H. 1970, Hydroxylation of aliphatic compounds by liver microsomes I. The distribution pattern of isomeric alcohols, Hoppe-Seyler’s Z. Physiol. Chem. 351: 903–912.

    Article  PubMed  CAS  Google Scholar 

  • Frommer U., Ullrich V, Staudinger H., and Orrenius S. 1972, The monooxygenation of n-heptane by rat liver microsomes, Biochim. Biophys. Acta 280: 487–494.

    Article  PubMed  CAS  Google Scholar 

  • Frommer U., Ullrich V, and Orrenius S. 1974, Influence of inducers and inhibitors on the hydroxylation pattern of n-hexane in rat liver microsomes, FEBS Letters 41: 14–16.

    Article  PubMed  CAS  Google Scholar 

  • Frontali N., Amantini M. C, Spagnolo A., Guarcini A. M., Saltari M. C, Brugnone F., and Perbellini L. 1981, Experimental neurotoxicity and urinary metabolites of the C5-C7 aliphatic hydrocarbons used as glue solvents in shoe manufacture, Clin. Toxicol. 18: 1357–1367.

    Article  PubMed  CAS  Google Scholar 

  • Fühner H. 1921, Die narkotische Wirkung des Benzins und seiner Bestandteile (Pentan, Hexan, Heptan, Oktan), Biochem. Z. 115: 235–261.

    Google Scholar 

  • Genter M. B., Szakal-Quin G., Anderson C. W., Anthony D. C, and Graham D. G. 1987, Evidence that pyrrole formation is a pathogenic step in gamma-diketone neuropathy, Toxicol. Appl. Pharmacol. 87, 351–362.

    Article  PubMed  CAS  Google Scholar 

  • Genter St. Clair M. B., Amarnath V, Moody M. A., Anthony D. C, Anderson C. W., and Graham D. G. 1988, Pyrrole oxidation and protein cross-linking as necessary steps in the development of γ-diketone neuropathy, Chem. Res. Toxicol. 1: 179–185.

    Article  Google Scholar 

  • Graham D. G., Anthony D. C, Boekelheide K., Maschmann N. A., Richards R. G., Wolfram J. W., and Shaw B. R. 1982, Studies of the molecular pathogenesis of hexane neuropathy. II. Evidence that pyrrole derivatization of lysyl residues leads to protein crosslinking, Toxicol. Appl. Pharmacol. 64: 415–422.

    Article  PubMed  CAS  Google Scholar 

  • Graham D. G., Amarnath V, Valentine W. M., Pyle S. J., and Anthony D. C 1995, Pathogenetic studies of hexane and carbon disulfide neurotoxicity, Crit. Rev. Toxicol. 25: 91–112.

    Article  PubMed  CAS  Google Scholar 

  • Hallier E., Filser J. G., and Bolt H. M. 1981, Inhalation pharmacokinetics based on gas uptake studies. II. Pharmacokinetics of acetone in rats, Arch. Toxicol. 47: 293–304.

    Article  PubMed  CAS  Google Scholar 

  • International Commission on Radiological Protection, 1974, Report of the task group on reference man, Pergamon Press, Oxford.

    Google Scholar 

  • Kessler W., Denk B., and Filser J. G., 1989, Species-specific inhalation pharmacokinetics of 2-nitropropane, methyl ethyl ketone, and n-hexane, In: Biologically based methods for cancer risk assesment (ed. C. C. Travis), NATO ASI Series, Plenum Press, New York, London, 123–139.

    Chapter  Google Scholar 

  • Kessler W., Heilmaier H., Kreuzer P., Shen J. H., Filser M., and Filser J. G. 1990, Spectrophotometric determination of pyrrole-like substances in urine of rat and man: An assay for the evaluation of 2,5-hexanedione formed from n-hexane, Arch. Toxicol. 64: 242–246.

    Article  PubMed  CAS  Google Scholar 

  • Kezic S., and Monster A. C 1991, Determination of 2,5-hexanedione in urine and serum by gas chromatography after derivatization with O-(pentafluorobenzyl)-hydroxylamine and solid-phase extraction, J. Chromatogr. 563: 199–204.

    PubMed  CAS  Google Scholar 

  • Krasavage W. J., O’Donoghue J. L., DiVincenzo G. D., and Terhaar C. J. 1980, The relative neurotoxicity of methyl n-butyl ketone, n-hexane and their metabolites, Toxicol. Appl. Pharmacol. 52: 433–441.

    Article  PubMed  CAS  Google Scholar 

  • Kreuzer P. E., Kessler W., Welter H. F., Baur C, and Filser J. G. 1991, Enzyme specific kinetics of 1,2-epoxybutene-3 in microsomes and cytosol from livers of mouse, rat, and man, Arch. Toxicol 65: 59–67.

    Article  PubMed  CAS  Google Scholar 

  • Laib R. J., Tucholski M., Filser J. G., and Csanády G. A. 1992, Pharmacokinetic interaction between 1,3-butadiene and styrene in Sprague-Dawley rats, Arch. Toxicol. 66: 310–314.

    Article  PubMed  CAS  Google Scholar 

  • Lazarew N. W. 1929, Über die Giftigkeit verschiedener Kohlenwasserstoffdämpfe, Arch. Exp. Pathol. Pharmacol. 143: 223–233.

    Article  Google Scholar 

  • Mattocks A. R., and White I. N. H. 1970, Estimation of metabolites of pyrrolizidine alkaloids in animal tissues, Anal. Biochem. 38: 529–535.

    Article  PubMed  CAS  Google Scholar 

  • O’Donoghue J. L., and Krasavage W. J., 1979, The structure-activity relationship of aliphatic diketones and their potential neurotoxicity, Toxicol. Appl. Pharmacol. 48: A55.

    Google Scholar 

  • Ono Y, Takeuchi Y., Hisanaga N., Iwata M, Kitoh J., and Sugiura Y 1982, Neurotoxicity of petroleum benzine compared with n-hexane, Int. Arch. Occup. Environ. Health 50: 219–229.

    Article  PubMed  CAS  Google Scholar 

  • Perbellini L., Brugnone F., Caretta D., and Maranelli G. 1985, Partition coefficients of some industrial aliphatic hydrocarbons (C5–C7) in blood and human tissues, Br. J. Ind. Med. 42: 162–167.

    PubMed  CAS  Google Scholar 

  • Perbellini L., Brugnone F., Cocheo V, De Rosa E., and Bartolucci G. B. 1986, Identification of the n-heptane metabolites in rat and human urine, Arch. Toxicol. 58: 229–234.

    Article  PubMed  CAS  Google Scholar 

  • Perbellini L., Pezzoli G., Brugnone F., and Canesi M., 1993, Biochemical and physiological aspects of 2,5-hexanedione: endogenous or exogenous product? Int. Arch. Occup. Environ. Health 65: 49–52.

    Article  PubMed  CAS  Google Scholar 

  • Richter M., 1995, In-vitro-Untersuchungen zur Pyrrolbildungsgeschwindigkeit von 2,5-Hexandion und 2,5-Heptandion mit Na-Acetyl-L-lysin als Voraussetzung für eine vergleichende Abschätzung der neurotoxischen Potentiale beider γ-Diketone, Dissertation an der Fakultät für Medizin der Technischen Universität München.

    Google Scholar 

  • Sachs L., 1974, Angewandte Statistik. 4th ed., Springer Verlag, Berlin.

    Book  Google Scholar 

  • Sanagi S., Seki Y, Sugimoto K., and Hirata M. 1980, Peripheral nervous system functions of workers exposed to n-hexane at a low level, Int. Arch. Occup. Environ. Health 47: 69–79.

    Article  PubMed  CAS  Google Scholar 

  • Sayre L. M., Shearson C. M., Wongmongkolrit T., Medori R., and Gambetti P. 1986, Structural basis of γ-diketone neurotoxicity: Non-neurotoxicity of 3,3-dimethyl-2,5-hexanedione, ay-diketone incapable of pyrrole formation, Toxicol. Appl. Pharmacol. 84: 36–44.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt R. F., and Thews G., 1977, Physiologie des Menschen. 19th ed., Springer Verlag, Berlin.

    Book  Google Scholar 

  • Spencer P. S., Schaumburg H. H., Sabri M. I., and Veronesi B. V 1980, The enlarging view of hexacarbon neurotoxicity, Crit. Rev. Toxicol. 7: 279–356.

    Article  PubMed  CAS  Google Scholar 

  • Stetter H., and Kuhlmann H., 1975, Addition von Aldehyden an aktivierte Doppelbindungen: VII; Eine neue einfache Synthese von cis-Jasmon und Dihydrojasmon, Synthesis 379-380.

    Google Scholar 

  • Stetter H., and Kuhlmann H. 1976, Addition von Aldehyden an aktivierte Doppelbindungen, XI; Addition aliphatischer. heterocyclischer und aromatischer Aldehyde an Butenon, Chem. Ber. 109: 3426–3431.

    Article  CAS  Google Scholar 

  • Stömer A., Kreuzer P. E., Kessler W., Csanády Gy. A., and Filser J. G., 1993, Bestimmung von Pyrrolen im Urin von Ratten nach Exposition gegen n-Heptan und n-Hexan — ein Mittel zum Vergleich des neurotoxischen Potentials beider Kohlenwasserstoffe, Verhandlungen der Deutschen Gesellschaft für Arbeitsmedizin und Umweltmedizin e. V, 33. Jahrestagung, Genter Verlag, Stuttgart, 481–486.

    Google Scholar 

  • Stömer A., Kessler W., and Filser J. G., 1994, 2,5-Heptandion im Urin des Menschen nach Exposition gegen n-Heptan — Vergleich der neurotoxischen Potentiale von n-Heptan und n-Hexan, Verhandlungen der Deutschen Gesellschaft für Arbeitsmedizin und Umweltmedizin e. V, 34. Jahrestagung, Genter Verlag, Stuttgart, 363–36

    Google Scholar 

  • Stömer A. 1995, Pyrrole und 2,5-Heptandion im Urin der Ratte und 2,5-Heptandion im Urin des Menschen: Analytische Bestimmung der Ausscheidung nach Exposition gegen n-Heptan, Dissertation an der Fakultät für Chemie, Biologie und Geowissenschaften der Technischen Universität München.

    Google Scholar 

  • Takeuchi Y, Ono Y, Hisanga N., Kitoh J., and Sugiura Y, 1980, A comparative study on the neurotoxicity of n-pentane, n-hexane, and n-heptane in the rat, Br. J. Ind. Med. 37: 241–247.

    PubMed  CAS  Google Scholar 

  • Takeuchi Y, Ono Y, Hisanga N., Kitoh J., and Sugiura Y 1981, A comparative study on the toxicity of n-pentane, n-hexane, and n-heptane to the peripheral nerve of the rat, Clin. Toxicol. 18: 1395–1402.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi Y, Ono Y, Hisanga N., Iwata M., Aoyama M., Kitoh J., and Sugiura Y. 1983, An experimental study of the combined effects of n-hexane and methyl ethyl ketone, Br. J. Ind. Med. 40: 199–203.

    PubMed  CAS  Google Scholar 

  • Toftgård R., Haaparanta T., Eng L., and Halpert J. 1986, Rat lung and liver microsomal cytochrome P-450 isozymes involved in the hydroxylation of n-hexane, Biochem. Pharmacol. 35: 3733–3738.

    Article  PubMed  Google Scholar 

  • Veulemans H., Van Vlem E., Janssens H., Masschelein R., and Leplat A. 1982, Experimental human exposure to n-hexane, Int. Arch. Occup. Environ. Health 49: 251–263.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Filser, J.G. et al. (1996). Comparative Estimation of the Neurotoxic Risks of N-Hexane and N-Heptane in Rats and Humans Based on the Formation of the Metabolites 2,5-Hexanedione and 2,5-Heptanedione. In: Snyder, R., et al. Biological Reactive Intermediates V. Advances in Experimental Medicine and Biology, vol 387. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9480-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9480-9_50

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9482-3

  • Online ISBN: 978-1-4757-9480-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics