Skip to main content

Architecture and Hemodynamics of Microvascular Networks

  • Chapter
Biological Flows

Abstract

The main function of the circulation is to transport materials between different parts of the body. Transport over large distances is accomplished by convection, in blood flowing through large vessels. Exchange of materials between blood and tissues occurs mainly over short distances in the peripheral vascular beds, which consist of numerous very small vessels (the microcirculation). These microvessels provide a large surface area for exchange, and bring blood into close proximity to nearly all parts of most organs. Transport at this microscopic level occurs by diffusion, by active cellular transport, or by convective motion of water through microvessel walls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnard, A.C.L., Lopez, L. and Heliums, J.D. (1968) Basic theory of blood flow in capillaries. Microvasc. Res. 1,23–34.

    Article  Google Scholar 

  • Burton, A.C. (1972) Physiology and Biophysics of the Circulation. 2nd ed. Chicago: Year Book Medical Publishers.

    Google Scholar 

  • Dawant, B. Levin, M. and Popel, A.S. (1986) Effect of dispersion of vessel diameters and lengths in stochastic networks. I. Modeling of microcirculatory flow. Microvasc. Res. 31, 203–222.

    Article  CAS  PubMed  Google Scholar 

  • Davis, M.J. and Gore, R.W. (1986) Pressure distribution in the microvascular network of the hamster cheek pouch. In Microvascular Networks: Experimental and Theoretical Studies, ed. A.S. Popel and P.C. Johnson, pp. 142–154. Basel: Karger.

    Google Scholar 

  • Desjardins, C. and Duling, B.R. (1987) Microvessel hematocrit: measurement and implications for capillary oxygen transport. Am. J. Physiol. 252, H494–H503.

    CAS  PubMed  Google Scholar 

  • Duling, B.R. and Damon, D.H. (1987) An examination of the measurement of flow heterogeneity in striated muscle. Circ. Res. 60, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Engelson, E.T., Skalak, T.C. and Schmid-Schönbein, G.W. (1985) The microvasculature in skeletal muscle. I. Arteriolar network in the rat spinotrapezius muscle. Microvasc. Res. 30. 29–44.

    Article  CAS  PubMed  Google Scholar 

  • Fåhraeus, R. (1928) Die Strömungsverhältnisse und die Verteilung der Blutzellen im Gefässsystem. Klin. Wschr. 7, 100–106.

    Article  Google Scholar 

  • Fahraeus, R. and Lindqvist, T. (1931) The viscosity of the blood in narrow capillary tubes. Am. J. Phvsiol. 96, 562–568.

    CAS  Google Scholar 

  • Fenton, B.M. and Zweifach, B.W. (1981) Microcirculatory model relating geometrical variation to changes in pressure and flow rate. Ann. Biomed. Eng. 9, 303–321.

    Article  Google Scholar 

  • Fenton, B.M., Wilson, D.W. and Cokelet, G.R. (1985) Analysis of the effects of measured white blood cell entrance times on hemodynamics in a computer model of a microvascular bed. Pflügers Arch. 403 396–401.

    Article  CAS  PubMed  Google Scholar 

  • Frasher, W.G. and Wayland, H. (1972) A repeating modular organization of the microcirculation of cat mesentery. Microvasc. Res. 4, 62–76.

    Article  PubMed  Google Scholar 

  • Fronek, K. and Zweifach, B.W. (1975) Microvascular pressure distribution in skeletal muscle and the effect of vasodilation. Am. J. Physiol. 228, 791–796.

    CAS  PubMed  Google Scholar 

  • Fung, Y.C. (1984) Biodynamics: Circulation. New York: Springer.

    Google Scholar 

  • Gaehtgens, P. and Schmid-Schönbein, H. (1982) Mechanisms of dynamic flow adaptation of mammalian erythrocytes. Naturwissenschaften 69, 294–296.

    Article  CAS  PubMed  Google Scholar 

  • Gaehtgens, P., Ley, K., and Pries, A.R. (1986) Topological approach to the analysis of microvessel structure and hematocrit distribution. In Microvascular Networks: Experimental and Theoretical Studies, ed. A.S. Popel and P.C. Johnson, pp. 52–60. Basel: Karger.

    Google Scholar 

  • Gore, R.W. (1974) Pressures in cat mesenteric arterioles and capillaries during changes in systemic blood pressure. Circ. Res. 34. 581–591.

    Article  CAS  PubMed  Google Scholar 

  • Halpern, D. and Secomb, T.W. (1989) The squeezing of red blood cells through capillaries with near-minimal diameters. J. Fluid Mech. 203. 381–400.

    Article  Google Scholar 

  • Hochmuth, R.M. and Waugh, R.E. (1987) Erythrocyte membrane elasticity and viscosity. Ann. Rev. Physiology 49, 209–219.

    Article  CAS  Google Scholar 

  • Horton, R.E. (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol. Soc. Amer. Bull. 56, 275–370.

    Article  Google Scholar 

  • Hsu, R. and Secomb, T.W. (1989) Motion of non-axisymmetric red blood cells in cylindrical capillaries. J. Biomech. Eng. 111, 147–151.

    Article  CAS  PubMed  Google Scholar 

  • Kiani, M.F., Cokelet, G.R. and Sarelius, I.H. (1993) Effect of diameter variability along a microvessel segment on pressure drop. Microvasc. Res. 45, 219–232.

    Article  CAS  PubMed  Google Scholar 

  • Koller, A., Dawant, B, Liu, A., Popel, A.S., and Johnson, P.C. (1987) Quantitative analysis of arteriolar networkarchitecture in cat sartorius muscle. Am. J. Phvsiol. 253, H154–H164.

    CAS  Google Scholar 

  • Krogh, A. (1921) Studies on the physiology of capillaries. II. The reactions to local stimuli of blood vessels in the skin and web of the frog. J. Physiol. (London) 55, 412–422.

    CAS  Google Scholar 

  • Levin, M., Dawant, B. and Popel, A.S. (1986) Effect of dispersion of vessel diameters and lengths in stochastic networks. I. Modeling of microvascular hematocrit distribution. Microvasc. Res. 31, 223–234.

    Article  CAS  PubMed  Google Scholar 

  • Ley, K., Pries, A.R. and Gaehtgens, P. (1986) Topological structure of rat mesenteric microvessel networks. Microvasc. Res. 32, 315–332.

    Article  CAS  PubMed  Google Scholar 

  • Lighthill, M.J., (1968) Pressure-forcing of tightly fitting pellets along fluid-tilled elastic tubes. J. Fluid Mech. 34, 113–143.

    Article  Google Scholar 

  • Lipowsky, H.H. and Zweifach, B.W. (1974) Network analysis of microcirculation in rat mesentery. Microvasc. Res. 7, 73–83.

    Article  CAS  PubMed  Google Scholar 

  • Lipowsky, H.H., Kovalcheck, S. and Zweifach, B.W. (1978) The distribution of blood rheological parameters in the microvasculature of cat mesentery. Circ. Res. 43, 738–749.

    Article  CAS  PubMed  Google Scholar 

  • Mall, J.P. (1888) Die Blut-und Lymphwege im Dünndarm des Hundes. Königl. Sächs. Gesellsch. der Wissensch., Abhandlung der Math. Physikal. Klasse, Leipzig, Vol. XIV, 153-161.

    Google Scholar 

  • Martini, P., Pierach, A., and Schreyer, E. (1930) Die Strömung des blutes in engen Gefässen. Eine Abweichung vom Poiseuille’schen Gesetz. Dtsch. Arch. Klin. Med. 169, 212–222.

    Google Scholar 

  • Mayrovitz, H.N. (1986) Hemodynamic significance of microvascular arteriolar anastamosing. In Microvascular Networks: Experimental and Theoretical Studies, ed. A.S. Popel and P.C. Johnson, pp. 197–209. Basel: Karger.

    Google Scholar 

  • Mayrovitz, H.N. and Roy, J. (1983) Microvascular blood flow: evidence indicating a cubic dependence on arteriolar diameter. Am. J. Physiol. 245: H1031–H1038.

    CAS  PubMed  Google Scholar 

  • Meilander, S. and Björnberg, J. (1992) Regulation of vascular smooth muscle tone and capillary pressure. News in Physiol. Sci. 7, 113–119.

    Google Scholar 

  • Popel, A.S. (1987) Network models of peripheral circulation. In Handbook of Bioengineering, ed. R. Skalak and S. Chien, pp. 20.1–20.24. New York: McGraw-Hill.

    Google Scholar 

  • Popel, A.S., Torres Filho, I.P., Johnson, P.C. and Bouskela, E. (1988) A new scheme for hierarchical classification of anastomosing vessels. Int. J. Microcirc. Clin. Exp. 7, 131–138.

    CAS  PubMed  Google Scholar 

  • Potter, R.F., and Groom, A.C. (1983) Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts. Microvasc. Res. 25, 68–84.

    Article  CAS  PubMed  Google Scholar 

  • Pries, A.R., Ley, K. and Gaehtgens, P. (1986) Generalization of the Fåhraeus principle for microvessel networks. Am. J. Physiol. 251, H1324–H1332.

    CAS  PubMed  Google Scholar 

  • Pries, A.R., Ley, K., Claasen, M. and Gaehtgens, P. (1989) Red cell distribution at microvascular bifurcations. Microvasc. Res. 38, 81–101.

    Article  CAS  PubMed  Google Scholar 

  • Pries, A.R., Secomb, T.W., Gaehtgens, P. and Gross, J.F. (1990) Blood flow in microvascular networks — Experiments and simulation. Circ. Res. 67: 826–834.

    Article  CAS  PubMed  Google Scholar 

  • Pries, A.R., Neuhaus, D. and Gaehtgens, P. (1992a) Blood viscosity in tube flow: dependence on diameter and hematocrit. Am: J. Physiol. 263, H1770–1778.

    CAS  Google Scholar 

  • Pries, A.R., Fritzsche, A., Ley, K., and Gaehtgens, P. (1992b) Redistribution of red blood cell flow in microcirculatory networks by hemodilution. Circ. Res. 70, 1113–1121.

    Article  CAS  PubMed  Google Scholar 

  • Pries, A.R., Secomb, T.W., Gessner, T., Sperandio, M.B., Gross, J.F. and Gaehtgens, P. (1994) Resistance to blood flow in microvessels in vivo. Circ. Res. 75: 904–915.

    Article  CAS  Google Scholar 

  • Reinke, W., Gaehtgens, P. and Johnson, P.C. (1987) Blood viscosity in small tubes: effect of shear rate, aggregation and sedimentation. Am. J. Physiol. 253, H540–H547.

    CAS  PubMed  Google Scholar 

  • Renkin, E.M. (1985) Regulation of the microcirculation. Microvasc. Res. 30, 251–263.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, D.R. and Zweifach B.W. (1970) Pressure relationships in the macro-and microcirculation of the mesentery. Microvasc. Res. 2, 474–488.

    Article  CAS  PubMed  Google Scholar 

  • Schmid-Schönbein, G.W., Skalak, R., Usami, S. and Chien, S. (1980) Cell distribution in capillary networks. Microvasc. Res. 19, 18–44.

    Article  PubMed  Google Scholar 

  • Schmid-Schönbein, G.W., Sung, K.-R, Tözeren, H., Skalak, R. and Chien, S. (1981) Passive mechanical properties of human leukocytes. Biophys. J. 36, 243–256.

    Article  PubMed Central  PubMed  Google Scholar 

  • Secomb, T.W. (1987) Flow-dependent rheological properties of blood in capillaries. Microvasc. Res. 34, 46–58.

    Article  CAS  PubMed  Google Scholar 

  • Secomb, T.W. (1991) Red blood cell mechanics and capillary blood rheology. Cell Biophysics 18: 23 1–251.

    CAS  Google Scholar 

  • Secomb, T.W. (1995) Mechanics of blood flow in the microcirculation. To appear in Biological Fluid Dynamics, ed. C.P. Ellington and T.J. Pedley. Cambridge, Company of Biologists.

    Google Scholar 

  • Secomb, T.W., Skalak, R., üzkaya, N. and Gross, J.F. (1986) Flow of axisymmetric red blood cells in narrow capillaries. J. Fluid Mech. 163, 405–423.

    Article  Google Scholar 

  • Secomb, T.W., Pries, A.R., Gaehtgens, P. and Gross, J.F. Theoretical and experimental analysis of hematocrit distribution in microcirculatory networks. In Microvascular Mechanics, ed. J.S. Lee and T.C. Skalak, Springer, New York, 1989, pp. 40–49.

    Google Scholar 

  • Skalak, R. (1976) Rheology of red blood cell membrane. In Microcirculation, Vol. I, ed. J. Grayson and W. Zingg, pp. 53–70. New York: Plenum.

    Google Scholar 

  • Strahler, A.N. (1952) Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. Amer. Bull. 63, 1117–1142.

    Article  Google Scholar 

  • Vicaut, E. (1986) Statistical estimation of parameters in microcirculation. Microvasc. Res. 32, 244–247.

    Article  CAS  PubMed  Google Scholar 

  • Warnke, K.C. and Skalak, T.C. (1990) The effects of leukocytes on blood flow in a model skeletal muscle capillary network. Microvasc. Res. 40, 118–136.

    Article  CAS  PubMed  Google Scholar 

  • Wiedeman, M.P., Turna, R.F. and Mayrovitz, H.N. (1981) An Introduction to Microcirculation. New York: Academic Press.

    Google Scholar 

  • Zarda, P.R., Chien, S. and Skalak, R. (1977) Interaction of viscous incompressible fluid with an elastic body. In Computational Methods for Fluid-Solid Interaction Problems, ed. T. Belytschko and T.L. Geers, pp. 65–82. New York: American Society of Mechanical Engineers.

    Google Scholar 

  • Zweifach, B.W. (1937) The structure and reactions of the small blood vessels in Amphibia. Am. J. Anat. 60, 473–514.

    Article  Google Scholar 

  • Zweifach, B.W. (1974) Quantitative studies of microcirculatory structure and function. I. Analysis of pressure distribution in the terminal vasculature in cat mesentery. Circ. Res. 34, 843–857.

    CAS  PubMed  Google Scholar 

  • Zweifach, B.W. and Lipowsky, H.H. (1977) Quantitative studies of microcirculatory structure and function. III. Microvascular hemodynamics of cat mesentery and rabbit omentum. Circ. Res. 41, 380–390.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Secomb, T.W., Pries, A.R., Gaehtgens, P. (1995). Architecture and Hemodynamics of Microvascular Networks. In: Jaffrin, M.Y., Caro, C.G. (eds) Biological Flows. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9471-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9471-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9473-1

  • Online ISBN: 978-1-4757-9471-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics