Skip to main content

Computational Visualization of Blood Flow in the Cardiovascular System

  • Chapter
Biological Flows
  • 188 Accesses

Abstract

Fluid flow, such as blood flow and air flow, is a sine qua non mechanical phenomenon for maintaining the life of animals particularly vertebrates. Among them, blood flow is of vital concern not only from the view point of normal physiological conditions but also with respect to various disorders. It is, however, noteworthy that we can not clearly separate the physiological role and the pathological behavior of blood flow because the pathological process begins under normal physiological conditions. In other words, pathological phenomena should be regarded as being seamlessly continuous with the physiological state [1]. This is particularly true for some vascular diseases which start and develop under a strong influence of blood flow [2]. Atherosclerosis is representative among these diseases and is very important because its development finally results in the diminution and cessation of blood flow to crucial organs, particularly to the brain and the heart [3]. In westernized or industrial societies, death directly or indirectly caused by atherosclerosis usually occupies the top of the mortality statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yoshida, Y., Wang, S., Yamane, T., Okano, M., Oyama, T., Mitsumata, M., Suda, K., Yamaguchi, T., and Ooneda, G., 1990, Structural differences of arterial walls which are either vulnerable or resistant to atherosclerosis, Acta Medica et Biologica 38:1–19.

    Google Scholar 

  2. Caro, C.G., Pedley, T.J., Schroter, R.C., and Seed, W.A., 1978, The mechanics of the circulation, Oxford University Press, Oxford, 341–346.

    Google Scholar 

  3. Woolf, N., 1982, Pathology of Atherosclerosis, Butterworth Scientific, London, 187–216.

    Google Scholar 

  4. Caro, C.G., Fitz-Gerald, J.M., and Schroter, R.C., 1971, Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis, Proc. Roy. Soc. London (Biol) 177:109–159.

    Article  CAS  Google Scholar 

  5. Yamaguchi, T., Hanai, S., Oyama, T., Mitsumata, M., and Yoshida, Y., 1986, Effect of blood flow on the localization of fibrocellular intimai thickening and atherosclerosis at the young human abdominal aorta-inferior mesenteric artery branching (In Japanese), Recent Advances in Cardiovascular Disease 7:97–108.

    Google Scholar 

  6. Yamaguchi, T., Nakano, A., and Hanai, S., 1990, Three dimensional shear stress distribution around small atherosclerotic plaques with steady and unsteady flow, In: Mosora, F., Caro, C.G., Krause, E., Schmid-Schönbein, H., Baquey, C., and Pelissier, R., (Eds.) Biomechanical Transport Process, Plenum Press, New York, 173–182.

    Google Scholar 

  7. Sakurai, A., Nakano, A., Yamaguchi, T., Masuda, M., and Fujiwara, K., 1991, A computational fluid mechanical study of flow over cultured endothelial cells, Advances in Bioengineering, BED-20:299–302.

    Google Scholar 

  8. Taylor, T.W., and Yamaguchi, T., 1992, Three-dimensional simulation of blood flow in an abdominal aortic aneurysm using steady and unsteady computational methods, Advances in Bioengineering, BED-22:229–232.

    Google Scholar 

  9. Yamaguchi, T., and Taylor, T.W., 1992, A parametrically defined computational fluid mechanical model for the study of the flow in arterial bifurcations, Advances in Bioengineering, BED-22:237–240.

    Google Scholar 

  10. Yamaguchi, T., and Taylor, T.W., 1992, Computational fluid mechanical study of the coronary spasm, Advances in Bioengineering, BED-22:333–340.

    Google Scholar 

  11. Taylor, T.W., and Yamaguchi, T., 1992, Three-dimensional graphics and computational model construction of vascular chambers using physiological cast measurements, Advances in Bioengineering, BED-22:469–472.

    Google Scholar 

  12. Taylor, T.W., Okino, H., and Yamaguchi, T., 1993, Three dimensional analysis of left ventricular ejection using computational fluid dynamics, Bioengineering Conference BED-24:136–139.

    Google Scholar 

  13. Yamaguchi, T., Hoshiai, K., Okino, H., Sakurai, A., Hanai, S., Masuda, M., and Fujiwara, K., 1993, Shear stress distribution over confluently cultured endothelial cells studied by computational fluid mechanics, Bioengineering Conference BED-24:167–170.

    Google Scholar 

  14. Sakurai, A., Yamaguchi, T., Okino, H., Hanai, S., and Masuda, M., 1993, A method for formulating realistic mathematical models based on arterial casts for the computational fluid mechanical studies on arterial flow and atherosclerosis, Journal de Physique III 3:1551–1556.

    Article  Google Scholar 

  15. Taylor, T.W., Okino, H., and Yamaguchi, T., 1993, The effects of supravalvular aortic stenosis on realistic three-dimensional left ventricular blood ejection, Biorheology 30:429–434.

    CAS  PubMed  Google Scholar 

  16. Taylor, T.W., Okino, H., and Yamaguchi, T., 1993, Realistic three-dimensional left ventricular ejection determined from computational fluid dynamics, Advances in Bioengineering BED-26:119–122.

    Google Scholar 

  17. Yamaguchi, T., 1993, A computational fluid mechanical study of blood flow in a variety of asymmetric arterial bifurcations, Frontiers of Medical and Biological Engineering 5:135–141.

    CAS  PubMed  Google Scholar 

  18. Yamaguchi, T., and Taylor, T.W., 1993, Computational fluid mechanical study of the blood flow with moving walls in the cardiovascular system, Theoretical and Applied Mechanics, 42:331–338.

    Google Scholar 

  19. Taylor, T.W., and Yamaguchi, T., 1994, Three-dimensional simulation of blood flow in an abdominal aortic aneurysm — steady and unsteady flow cases, Journal of Biomechanical Engineering 116:89–97.

    Article  CAS  PubMed  Google Scholar 

  20. Taylor, T.W., Okino, H., and Yamaguchi, T., 1994, Three-dimensional analysis of left ventricular ejection using computational fluid mechanics, Journal of Biomechanical Engineering 116:127–130.

    Article  CAS  PubMed  Google Scholar 

  21. Yamaguchi, T., and Taylor, T.W., 1994, Some moving boundary problems in computational bio-fluid mechanics. In: Crolet, J.M., and Ohayon, R., (eds) Computational methods for fluid-structure interaction, Longman Scientific & Technical, Harlow, U.K. 306:198–213.

    Google Scholar 

  22. Yamaguchi, T., 1994, Maximum wall shear at the nuclear bulge of endothelial cells and their alignment along the blood flow — a computational fluid mechanical study-, Advances in Bioengineering, BED-28:347–348.

    Google Scholar 

  23. Taylor, T.W., and Yamaguchi, T., 1995, Flow patterns in three-dimensional left ventricular systolic and diastolic flows determined from computational fluid dynamics, Biorheology 32:107–117.

    Google Scholar 

  24. Friedman, M.H., Deters, O.J., Mark, F.F., Bargeron, C.B., and Hutchins, G.M., 1983, Arterial geometry affects hemodynamics. A potential risk factor for atherosclerosis, Atherosclerosis 46:225.

    Article  CAS  PubMed  Google Scholar 

  25. Friedman, M.H., Brinkman, A.M., Qin, J.J., and Seed, W.A., 1993, Relation between coronary artery geometry and the distribution of early sudanophilic lesions, Atherosclerosis 98:193–199.

    Article  CAS  PubMed  Google Scholar 

  26. Masawa, N., Glagov, S., and Zarins, C.K., 1994, Quantitative morphologic study of intimai thickening at the human carotid bifurcation: I Axial and circumferential distribution of maximum intimai thickening in asymptomatic, uncomplicated plaques, Atherosclerosis 107:137–146.

    Article  CAS  PubMed  Google Scholar 

  27. Vesely, I., Eickmeier, B., and Campbell, G., 1991, Automated 3-D reconstruction of vascular structures from high definition casts, IEEE Trans. Biomed. Eng. 38:1123–1129.

    Article  CAS  PubMed  Google Scholar 

  28. Daiguji, H., 1992, Numerical Fluid Dynamics (Suuchi Ryutai Rikigaku) (in Japanese) Chapter 1, (Eds.) Yasuhara, M., and Daiguji, H., University of Tokyo Press, Tokyo, 1992, 4.

    Google Scholar 

  29. Fung, Y.C., 1993, Biomechanics: mechanical properties of living tissues, 2nd Ed., Springer-Verlag, New York, 66–72.

    Book  Google Scholar 

  30. Perktold, K., Resch, M., and Florian, H., 1991, Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model, J. Biomechanical Engineering 113:464–475.

    Article  CAS  Google Scholar 

  31. Perktold, K., Thurner, E., and Kenner, T., 1994, Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models, Med. Biol. Eng. Comput. 32:19–26.

    Article  CAS  PubMed  Google Scholar 

  32. Reuderink, P., 1991, Analysis of the flow in a 3D distensible model of the carotid artery bifurcation. Thesis, Univ. Eindhoven.

    Google Scholar 

  33. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., 1960, Transport Phenomena, John Wiley & Sons, New York, 80–81.

    Google Scholar 

  34. Yamaguchi, T., Kikkawa, S., Yoshikawa, T., Tanishita, K., and Sugawara, M., 1983, Measurement of turbulence intensity in the center of the canine ascending aorta with a hot-film anemometer, J. Biomechanical Engineering, 105:177–187.

    Article  CAS  Google Scholar 

  35. Yamaguchi, T., and Parker, K.H., 1983, Spatial characteristics of turbulence in the aorta, Annals of New York Academy of Sciences, 404:370–373.

    Article  CAS  Google Scholar 

  36. Yamaguchi, T., Kikkawa, S., and Parker, K.H., 1984, Application of Taylor’s hypothesis to an unsteady convective field for the spectral analysis of turbulence in the aorta, J. Biomechanics 17:889–895.

    Article  CAS  Google Scholar 

  37. Yamaguchi, T., Kikkawa, S., Tanishita, K., and Sugawara, M., 1988, Spectrum analysis of turbulence in the canine ascending aorta measured with a hot-film anemometer, J. Biomechanics 21:489–495.

    Article  CAS  Google Scholar 

  38. Hanai, S., Yamaguchi, T., and Kikkawa, S, 1991, Turbulence in the canine ascending aorta and the blood pressure, Biorheology 28:107–116.

    CAS  PubMed  Google Scholar 

  39. Bradshaw, P., Cebeci, T., and Whitelaw, J.H., 1981, Engineering Calculation Methods for Turbulent Flow, Academic Press, London, 37–57.

    Google Scholar 

  40. Peyret, R., Taylor, T.D., 1983, Computational Methods for Fluid Flow, Springer-Verlag, New York, 18–140.

    Book  Google Scholar 

  41. Fletcher, C.A.J., 1988, Computational Techniques for Fluid Dynamics, Vol I, Springer-Verlag, Berlin, 98–162.

    Book  Google Scholar 

  42. Nakahashi, K., and Fujii, K., 1995, Grid Generation and Computer Graphics (Computational Fluid Dynamics Series 6; (Ed.) Murakami S. (In Japanese), University of Tokyo Press, Tokyo, 1–134.

    Google Scholar 

  43. Thompson, J.F., Warsi, Z.U.A., and Mastin, C.W., 1982, Boundary-fitted coordinate systems for numerical solutions of partial differential equations—A review, J. Comp. Physics 47:1–108.

    Article  Google Scholar 

  44. Thompson, J.F., Warsi, Z.U.A., and Mastin, C.W., 1985, Numerical Grid Generation Foundations and Applications, Elsevier Science Publishing, New York.

    Google Scholar 

  45. Ku, D.N., and Giddens, D.P., 1987, Laser Doppler anemometer measurements of pulsatile flow in a model carotid bifurcation, J. Biomechanics 20:407–421.

    Article  CAS  Google Scholar 

  46. Fukushima, T., Homma, T., Azuma, T., and Harakawa, K., 1987, Characteristics of secondary flow in steady and pulsatile flows through a symmetrical bifurcation, Biorheology 24:3–12.

    CAS  PubMed  Google Scholar 

  47. Fukushima, T., Homma, T., Harakawa, K., Sakata, N., and Azuma, T., 1988, Vortex generation in pulsatile flow through arterial bifurcation models including the human carotid artery, J. Biomechanical Engineering 110:166–171.

    Article  CAS  Google Scholar 

  48. Thiriet, M., Pares, C., Saltel, E., and Hecht, F., 1992, Numerical simulation of steady flow in a model of the aortic bifurcation, J. Biomech. Engng. 114:40–49.

    Article  CAS  Google Scholar 

  49. Perktold, K., Rappitsch, G., and Liepsch, D., 1994, Flow and wall shear stress in the human carotid artery bifurcation: computer simulation under anatomically realistic conditions, Advances in Bioengineering BED-28.-437–438.

    Google Scholar 

  50. Zarins, C.K., Giddens, D.P., Bharadvaj, B.K., Sottiturai, V.S., Mabon, R.F., and Glagov, S., 1983, Carotid bifurcation atherosclerosis: quantitative correlation of plaque localization with flow velocity profiles and wall shear stress, Circ. Res. 53:502–514.

    Article  CAS  PubMed  Google Scholar 

  51. Ku, D.N., Giddens, D.P., Zarins, C.K., and Glagov, S., 1985, Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low and oscillating shear stress, Arteriosclerosis 5:293–302.

    Article  CAS  PubMed  Google Scholar 

  52. Davies, P.F., and Tripathi, S.C., 1993, Mechanical Stress Mechanisms and the cell: an endothelial paradigm, Circ. Res. 72:239–245.

    Article  CAS  PubMed  Google Scholar 

  53. Yamaguchi, T., 1994, Deformation and alignment of arterial endothelial cells along blood flow (a computational fluid mechanical study), (In Japanese) Trans. Japan Soc. Mech. Engineers B 60:3665–3671.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yamaguchi, T. (1995). Computational Visualization of Blood Flow in the Cardiovascular System. In: Jaffrin, M.Y., Caro, C.G. (eds) Biological Flows. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9471-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9471-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9473-1

  • Online ISBN: 978-1-4757-9471-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics