Skip to main content

Part of the book series: Biodeterioration Research ((BIOR,volume 4))

Abstract

The purpose of this paper is to present a brief review of how microbial fouling films affect the corrosion behavior of passive metals and alloys in fresh, brackish and sea waters. It has often been reported that microbial films change the open circuit corrosion potential (OCP) of passive metals immersed in natural waters (Mollica and Travis, 1976; Johnsen and Bardal, 1985, 1986; Scotto, et al., 1985; Dexter and Gao, 1988; Gallagher, et al., 1988; Scotto, 1989). The change has usually been in the noble (electropositive) direction, and it has been called, “ennoblement.” The significance of this effect lies in it’s influence on localized corrosion initiation and propagation. In chloride bearing waters, the initiation of pitting and crevice corrosion is statistical, with the probability of initiation increasing directly with chloride ion activity and OCP. Thus, at a given chloride level, the probability of localized corrosion initiation is increased by anything (such as a biofilm and its metabolic products) that causes the OCP to shift in the noble direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller, R.C. (1983). The importance of the diffusive permeability of animal burrow linings in determining marine sediment chemistry. J. Marine Res. 41, 299–322.

    Article  CAS  Google Scholar 

  • Brock, T.D. and Madigan, M.T. (1988). Biology of Microorganisms, 5th Ed., Prentice Hall.

    Google Scholar 

  • Dexter, S.C. (1992). Role of microfouling organisms in marine corrosion. Biofoulinq in press.

    Google Scholar 

  • Dexter, S.C. and Culberson, C. (1980). Global variability of natural seawater. Materials Performance 19, No. 9, 16–28.

    Google Scholar 

  • Dexter, S.C., Lucas, K.E. and Gao, G.Y. (1986). The role of marine bacteria in crevice corrosion initiation. In: Biologically Induced Corrosion pp. 144153 (S.C. Dexter, ed.,), National Assoc. of Corrosion Engineers, Houston, TX.

    Google Scholar 

  • Dexter, S.C. and Gao, G.Y. (1988). Effect of seawater biofilms on corrosion potential and oxygen reduction of stainless steel. Corrosion 44, 717–723.

    CAS  Google Scholar 

  • Dexter, S.C. and Lin, S-H. (1991). Effect of marine bacteria on calcareous deposition. Materials Performance 30 No. 4, 16–21.

    CAS  Google Scholar 

  • Dexter, S.C. and Lin, S-H. (1992). Effect of marine bacteria on cathodic protection. Intl. Biodeterioration and Biodegredation 29, 231–249.

    Article  CAS  Google Scholar 

  • Dexter, S.C. and Zhang, H-J. (1990). Effect of biofilms on corrosion potential of stainless alloys in estuarine waters. Proc. 11th Intl. Corrosion Conq. Florence, Italy, Vol. 4, 333–340.

    Google Scholar 

  • Dexter, S.C. and Zhang, H-J. (1991). Effect of biofilms, sunlight and salinity on corrosion potential and corrosion initiation of stainless alloys. EPRI NP-7275, Final Report on Project 2939–4, Electric Power Research Inst., Palo Alto, CA.

    Google Scholar 

  • Dowling, N.J.E, Guezennec, J., Bullen, J., Little, B. and White, D.C. (1992). Biofoulinq 5, 315–322.

    Google Scholar 

  • Edyvean, R.G.J. (1984). Interactions between microfouling and the calcareous deposit formed on cathodically protected steel in seawater. Proc. 6th Intl. Congr. on Marine Corrosion and Fouling, Marine Biology Athens, Greece, 469–483.

    Google Scholar 

  • Edyvean, R.G.J., Terry, L.A. and Picken, G.B. (1985). Marine fouling and its effects on offshore structures in the North Sea–A Review. Intl. Biodeterioration 21, 277–284.

    Google Scholar 

  • Edyvean, R.G.J. and Moss, B.L. (1986). Microalgal communities on protected steel substrata in seawater. Estuarine, Coastal and Shelf Sci., 22, 509527.

    Google Scholar 

  • Fogg, G.E. (1975). Primary Productivity, In: Chemical Oceanography 2nd Ed., Vol 2, pp. 385–453 ( J.P. Riley and G. Skirrow, eds.), Academic Press, New York.

    Google Scholar 

  • Fokin, M.N., Kurtepov, M.M. and Bochkareva, V.I. (1965). Sbornik pp Korozii Moscow.

    Google Scholar 

  • Gallagher, P., Malpus, R.E. and Shone, E.B. (1988). Br. Corrosion J., 23, No. 4, 229.

    Article  CAS  Google Scholar 

  • Gaudy, A. and Gaudy, E. (1980). Microbiology for Environmental Scientists and Engineers. p. 183, McGraw-Hill Book Co., New York.

    Google Scholar 

  • Hancock, R.D. and Martell, A. E. (1989). Chem. Rev., 89, 1875.

    Google Scholar 

  • Johnsen, R. and Bardai, E. (1985). Cathodic properties of different stainless steels in natural seawater. Corrosion 41, 296–304.

    CAS  Google Scholar 

  • Johnsen, R. and Bardai, E. (1986). The effect of microbiological slime layer on stainless steel in natural seawater. Paper No. 227, Presented at Corrosion/86 NACE:Houston, TX.

    Google Scholar 

  • Kolotyrkin, Ya.M., Golovina, G.V. and Florianowich, G.M. (1963). Dokl. Akad. Nauk SSSR 148, 1106.

    Google Scholar 

  • Lamotta, E.J., (1976). Internal diffusion and reaction in biological films. Env. Sci. and Tech. 10, 765–769.

    Article  CAS  Google Scholar 

  • Leckie, H.P. and Uhlig, H.H. (1966). Environmental factors affecting the critical potential for pitting in 18–8 stainless steel. J. Electrochem. Soc., 113, 1262–1267.

    Article  CAS  Google Scholar 

  • Lewandowski, Z., Lee, W.C. and Characklis, W.G. (1988). Dissolved oxygen and pH microelectrode measurements at water immersed metal surfaces. Paper No. 93, Presented at Corrosion/88 NACE:Houston, TX.

    Google Scholar 

  • Little, B., Ray, R., Wagner, P., Lewandowski, Z., Lee, W., Characklis, W., and Mansfeld, F. (1990). Paper No. 150, Presented at CORROSION/90 NACE:Houston, TX.

    Google Scholar 

  • Little, B., Ray, R., Wagner, P., Lewandowski, Z., Lee, W., Characklis, W., and Mansfeld, F. (1991). Biofouling 3, 45–59.

    Google Scholar 

  • Mansfeld, F. and Little, B. (reply by Dexter, S.C.). (1989). Discussion on effect of seawater biofilms on corrosion potential and oxygen reduction on stainless steel. Corrosion 45, 786–789.

    CAS  Google Scholar 

  • Mansfeld, F., Tsai, R., Shih, H., Little, B., Ray, R. and Wagner, P. (1990). Paper No. 109, Presented at CORROSION/90 NACE:Houston, TX.

    Google Scholar 

  • Mansfeld, F., Tsai, R., Shih, H., Little, B., Ray, R. Wagner, P. (1992). Corrosion Science 33, No. 3, 445–456.

    Google Scholar 

  • Mollica, A. and Trevis, A. (1976). Correlation entre la formation de la pellicule primaire et la modification de la cathodique sur des aciers inoxydables experimentes en eau de mer aux vitesses de 0.3 A 5.2 m/s. Proc. 4th Intl. Cong. Marine Corrosion and Fouling Juan-Les-Pins, Antibes, France, 351–365.

    Google Scholar 

  • Pope, D.H., Zintel, T.P., Kuruvilla, A.K. and Siebert, O.W. (1988). Organic acid corrosion of carbon steel. Paper No. 79, Presented at CORROSION/88 NACE:Houston, TX.

    Google Scholar 

  • Pourbaix, M. (1974). Atlas of electrochemical equilibria in aqueous solutions. National Assoc. of Corrosion Engineers, Houston, TX, 97.

    Google Scholar 

  • Scotto, V. (1989). Electrochemical studies of biocorrosion of stainless steel in seawater. Proc. EPRI Workshop, Microbial Corrosion:1988 Electric Power Research Institute, Palo Alto, CA, B-1 to B-36.

    Google Scholar 

  • Scotto, V., DiCintio, R. and Marcenaro, G. (1985). The influence of marine aerobic microbial film on stainless steel corrosion behaviour. Corrosion Science 25, 185–194.

    CAS  Google Scholar 

  • Valen, S. (1986). Thesis, Department of Materials and Processes, Norwegian Institute of Technology, Trondheim, Norway.

    Google Scholar 

  • Van den Brink, F., Barendrecht, E. and Visscher, W. (1980). Recueil. J. Royal Netherlands Chemical Soc., 99, No. 9, 253.

    Google Scholar 

  • Zhang, H-J. and Dexter, S.C. (1992). Effect of marine biofilms on crevice corrosion of stainless alloys. Paper No. 400, Presented at CORROSION/92 NACE:Houston, TX.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dexter, S.C., Zhang, HJ., Chandrasekaran, P. (1994). Biofouling Effects on Corrosion of Stainless Alloys in Seawater. In: Llewellyn, G.C., Dashek, W.V., O’Rear, C.E. (eds) Mycotoxins, Wood Decay, Plant Stress, Biocorrosion, and General Biodeterioration. Biodeterioration Research, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9450-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9450-2_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9452-6

  • Online ISBN: 978-1-4757-9450-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics